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Abstract: The accurate detection of fiducial points in the impedance cardiography signal (ICG) has a
decisive impact on the proper estimation of diagnostic parameters such as stroke volume or cardiac
output. It is, therefore, necessary to find an algorithm that is able to assess their positions with
great precision. The solution to this problem is, however, quite challenging with regard to the high
sensitivity of the ICG technique to the noise and varying morphology of the acquired signals. The
aim of this study is to propose a novel method that allows us to overcome these limitations. The
developed algorithm is based on Empirical Mode Decomposition (EMD)—an effective technique
for processing and analyzing various types of non-stationary signals. We find high correlations
between the results obtained from the algorithm and annotated by an expert. This, in turn, implies
that the difference in estimation of the diagnostic-relevant parameters is small, which suggests that
the method can automatically provide precise clinical information.

Keywords: ICG; fiducial points; characteristic points; impedance cardiography; EMD; EEMD; stroke
volume

1. Introduction

Impedance cardiography (ICG) is a technique that measures the changes in impedance
across the thorax in a non-invasive way and can be used to monitor important hemody-
namic parameters without possible risks to or complications regarding a patient’s health.
The usefulness of this technique in the context of hemodynamic parameters was intro-
duced and confirmed in 1978 by Miller et al. [1]. Despite the non-invasive, inexpensive
and easy-to-use characteristics of ICG, this technique is not frequently applied in clinical
practice [2]. On the one hand, this is caused by the ICG’s limitations, i.e., patient obesity and
restriction of body weight (25–250 kg), heart rate limit up to 250/min, hyperactivity during
the measurement, or incidents of arrhythmia [3–5]. In addition, the complex character
of ICG signals pose some difficulties in the proper identification of characteristic points
and further estimation of the hemodynamic parameters. There are several algorithms and
methods of ICG signal analysis that allow for the determination of characteristic points,
which are directly translated into valuable hemodynamic features, including left ventricular
ejection (LVET), stroke volume (SV), or cardiac output (CO).
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The identification of the most important ICG signals points is related to the phase
of the cardiac cycles. The approaches to ICG point characterization have changed over
the years in order to increase their estimation stability. However, the accurate detection
of specific ICG points, which are clearly described in a forthcoming section, is quite
challenging. To start with, we have to be very careful with the filtering process—due to the
heart rate variability, some techniques may blur less distinctive events, making the proper
identification of points impossible. Second, the problem also comes from the changing
morphology of dZ/dt waveforms [6,7]. Eventually, there exists no uniform definition of
the points marking the aortic valve opening and closing (B, X), which leads to ambiguities
in the points identification even by expert cardiologists.

There are different approaches in the literature to overcoming the abovementioned
problems. The authors of [8] distinguish three kinds of techniques, detecting the character-
istic points in the ICG signal. Most algorithms use the positions of the R peak in the ECG
signal in order to estimate the interval in which the C point is searched for [9–12]. Then, C
point is established as the highest point occurring in this interval. Based on its position,
other points are identified with various mathematical conditions involving extrema, zero-
crossings, and higher-order derivatives [13–17]. Another group of methods utilizes the
time–frequency distribution of the signal [18] and the wavelet decomposition. Within these
approaches, the characteristic points are either identified as the singularities of the wavelet
transform [19–22] or inferred from the distribution of wavelet coefficients [23,24]. The
majority of them struggle, however, with a high computational complexity or a large
sensitivity to the artifacts.

In this article, we present a new approach to the estimation of characteristic points of
an ICG signal using the modified version of the empirical mode decomposition method
(EMD). The EMD is an empirical technique that decomposes the signal into a finite number
of frequency components. A significant advantage of this technique lies in the fact that, in
contrast to the other commonly used frequency-based techniques, i.e., Fourier transform,
the EMD can be successfully applied to the signals that characterize the non-stationary
and nonlinear processes. Signal decomposition into frequency components is used in
many fields of electrophysiological time series analysis, including the de-noising proce-
dure [25–27], the removal of a signal’s trend [28,29], the identification of the most valuable
components, and further statistical analysis [30]. One of the most common ways to use
EMD is the EMD-based classification of time series and features extraction. Based on the
features calculated for the individual frequency components, the further classification is
performed with standard methods of classification or machine learning approaches [31,32].

In the context of a biomedical signal analysis, the EMD techniques and their differ-
ent variants are widely applied in the analysis of ECG. It has been demonstrated that
this method can be helpful in tracking different cardiac arrythmia [33,34], in properly
detecting characteristic points of the signal [35–41], in T-wave alternates [42], and in signal
processing [25,40,43–49]. However, much less attention in the literature has been paid to
the possible applications of this algorithm in the impedance cardiography signal. We found
only a few reports regarding the usage of EMD in its analysis. In [50–52], it was shown
that EMD can be extremely useful in the identification of cardiovascular diseases. It also
facilitates the detection of characteristic points of this signal [53] and allows for effectively
suppressing noise without losing significant features in the acquired recordings [54,55].
Here, we propose a novel, EMD-based method that allows for the accurate detection of
fiducial points in the ICG signal. We find that the positions of the characteristic points
identified by this algorithm are in good agreement with those annotated by an expert
cardiologist, which results in accurate assessments of the hemodynamic parameters and
facilitates the diagnostic process. In addition, due to the low computational complexity
of this algorithm and the lack of requirements for simultaneous recording of the ECG
signal, the proposed method can be implemented on ultra-low power devices used in the
remote monitoring of cardiac patients. The paper is organized as follows. In Section 2,
we present a brief introduction to the method of impedance cardiography and provide
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a detailed description of the applied algorithms: EMD (empirical mode decomposition)
and EEMD (ensemble empirical mode decomposition). In Section 3, we introduce a new
method identifying ICG characteristic points based on the previously mentioned EMD and
EEMD techniques. We also study the accuracy of the proposed algorithm in predicting the
values of the hemodynamic parameters. Sections 4 and 5 contain a discussion of the results
and the final conclusions.

2. Methods
2.1. Impedance Cardiography

The bioimpedance method, also called impedance rheography, is a diagnostic tech-
nique for assessing the function of the body’s internal organs on the basis of the impedance
value or its changes in the examined area of the body. Impedance fluctuations occurring
as a result of changes in the volume and velocity of the blood vessels, air in the lungs,
as well as movements of organs and changes in their shape can provide information about
the state and function of the body’s internal organs [4,56–58]. The undoubted advantage
of the bioimpedance method is its non-invasiveness and lack of known side effects [59].
During the tests, electrical impedance measurements are made of the tested tissue area.
The examination consists of the application of an alternating application current of constant
amplitude into a tested area. Then, voltage recordings allow for continuous measurement
of the impedance values. The measured impedance depends on the blood volume in the
tested area, temperature, and blood resistivity, affected by spatial orientation of erythrocytes
and by hematocrit (HCT) [57,60].

The relationships between changes in blood volume and the impedance of a given body
segment are described using simplified models, such as the cylindrical model, the Cole–
Cole model, or the model by Hanai [61]. These models provide the basis for an analytical,
mathematical description of the attenuation and electrical permeability of biological tissues
and form the basis of impedance cardiography. In particular, they allow for reliable and
non-invasive determination of the cardiac stroke volume (SV,which is considered the most
important measure of the mechanical work behind the heart [56,57,62]. According to the
formula developed by Kubicek and his coworkers, SV can be calculated as follows [63]:

SV =
ρL2

Z2
0

(
dZ
dt

)
max
· LVET, (1)

where ρ is the specific resistance of blood, L denotes the thoracic length between voltage
electrodes, Z0 is a base impedance,

(
dZ
dt

)
max

corresponds to the maximum rate of a change
in bioimpedance, and LVET is a ventricular ejection time.

The expression given in Equation (1) was developed on the basis of the cylindrical
model of the thorax [56,58,64] presented in Figure 1.

Figure 1. Cylindrical chest model according to Kubicek. L corresponds to the length between voltage
electrodes applied during the ICG measurement.
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The model assumes that the resulting waveform of impedance changes ∆Z is due only
to volume changes in the heart and large blood vessels and that the resistivity of blood
during flow is constant [56]. Figure 2 presents an example of the impedance change curve
REO, as well as the derivative of the bioimpedance curve ICG for a single cardiac cycle.

Figure 2. The way to determine a change in the bioimpedance during one cardiac cycle [58].

The values of
(

dZ
dt

)
max

and LVET necessary to estimate the stroke volume SV can be
determined based on the positions of the characteristic points B , C , and X located on the
first derivative of the bioimpedance curve (ICG) [58].

Each of these points has a clear interpretation. Point B corresponds to the moment
of the aortic valve opening, point C denotes a maximum blood ejection speed, while
point X indicates the moment of the aortic valve closing [58]. A brief description of these
fiducial points along with the hemodynamic parameters that are determined based on
their locations in the ICG signal are introduced in Table 1. Some of the most important
hemodynamic quantities are CO, PEP, LVET, and the Heather Index. Their definitions are
presented in Table 2.

Table 1. A brief overview of the characteristic points of the ICG signal. The last column represents
the hemodynamic parameters (described in more detail in Table 2), the values of which are influenced
by their positions in the impedance cardiogram.

The Point Description Hemodynamic Parameters

B The onset of rapid upstroke towards the C point.
It represents the moment of aortic valve opening. PEP, LVET, SV, CO

C Point with the greatest amplitude in one cardiac
cycle. It represents the maximum aortic flow. HR, SV, CO, Heather Index

X The minimum ICG signal in one cardiac cycle. It
represents the moment of aortic valve closing. LVET, SV, CO

2.2. Empirical Mode Decomposition (EMD)
2.2.1. Standard EMD

Empirical mode decomposition (EMD) is a technique that decomposes the signal X(t)
into a finite number of modes, referred to as intrinsic mode functions (IMFs), and the
residuum signal rn(t):

x(t) =
n

∑
i=1

Ci(t) + rn(t) (2)

where Ci(t) stands for an IMF sequence and rn(t) is the residual signal.
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Table 2. A brief description of the most popular hemodynamic parameters inferred from the positions
of the characteristic points in the ECG and ICG signals.

The Hemodynamic Parameter Definition

PEP (Pre-ejection period) The time between electrical systole (Q point in ECG)
and opening of the aortic valve (B point in ICG).

LVET (Left Ventricular Ejection Time) The period of blood flow across the aortic valve.
The time between B and X points in the ICG signal.

HR (Heart Rate) The frequency of the heartbeat. The mean number of C
points occurrences in one minute.

Heather Index Cardiac contractility index defined as C/(C−Q).

SV (Stroke Volume) Amount of blood ejected from the left ventricle during
one cycle

CO (Cardiac Output) Amount of blood ejected from the left ventricle in
one minute

Modes are determined by locally dominant frequencies. Worth emphasizing is that
EMD has the ability to process the nonlinear and non-stationary time series, in contrast
to other commonly used techniques, i.e., the Fourier Transform. This property is directly
related to the empirical nature of the EMD technique. In other words, the data itself dictates
the decomposition and there is no prescribed analytical formula, which is the essence of
the algorithm. The method was originally developed by Huang et al. in 1998 [65]. In its
standard, it contains the following steps:

1. First, the maxima and minima of the sequence are identified.
2. Next, the upper and lower envelopes over found extremes are constructed by cubic

spline line interpolation.
3. The mean value m(t) of the upper and lower envelopes is estimated. This average

value is subtracted from the original series, h(t) = X(t)− m(t), and the resulting
signal h(t) is treated as the potential candidate to be the first IMF. Each IMF must
fulfill two conditions:

• The number of extrema (maxima and minima) and the number of zero crossings
must be equal to or differ at most by one;

• The average value of the upper and lower envelopes defined by local maxima
and minima must be zero.

4. If the conditions are not fulfilled, the procedure is repeated starting from step 1, this
time with h(t) as an input signal.

5. After the identification of the first IMF, this component is subtracted from the input
series. Then, the obtained residuum must meet the following stopping criterion:

• The residuum signal has only one extremum (minimum or maximum) or is
represented by a constant/monotonic function. That kind of residuum signal
characterizes the trend of the time series.

6. The whole procedure of this sifting process ends when a residual signal is found. If the
criterion of being residual sequences is not fulfilled yet, the procedure is repeated
from step 1 with a residuum as an input series. A diagram of the main standard EMD
stages is presented in Figure 3.

2.2.2. Ensemble Empirical Mode Decomposition

The standard version of EMD faces some difficulties, such as the mode mixing problem,
which occurs when one frequency is not assigned to the one mode but is spread over several
components. It leads to frequency mixing between different modes and, as a result, to an
inefficient decomposition. To overcome this problem, modified versions of the EMD, such
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as ensemble empirical mode decomposition (EEMD) [66] or, more recently, complete mode
empirical decomposition (CEEMD) [67], have been proposed.

Construct the upper and
lower envelope of the

original series X(t)

Substract the mean
value from the original

signal 
h(t) = X(t)-m(t)

Is the h(t) 
IMF ?

No

Yes Substract IMF
from the signal 
r(t) = X(t) - IMF 

Is the
r(t)  

residue?

No

Yes
The signal X(t) is
decomposed into

IMFs and r(t)

Figure 3. Illustration of the main stages of standard empirical mode decomposition.

The first one—EEMD—involves EMD of the original signal slightly perturbed by a
Gaussian noise.

The EEMD procedure can be summarized in the following steps:

1. A white noise sequence w(t) is added to the time series under consideration
xw(t) = x(t) + w(t).

2. The noisy signal w(t) is decomposed into IMFs through the standard procedure of
empirical mode decomposition described in the previous subsection.

3. The first two steps (1 and 2) are repeated for Nt different realizations of white noise.
4. EEMD-based IMFs are estimated by averaging the ensemble of IMFs:

IMFl(t) =
1

Nt

Nt

∑
i=1

IMFi
l (t), (3)

where IMFl(t) is the l − th-order IMF and i stands for the number of realizations.

3. Results
3.1. New Method of ICG Characteristic Point Identification

The proposed method allows one to evaluate the positions of the most crucial points:
B, C, and X used during the assessment of the hemodynamic parameters. Here, we assume
that the signal has already been subjected to an initial preprocessing stage. Then, we start
from the detection of the C point. Its accurate assessment is crucial for evaluating the
heart rate value. The position of this point is also often treated as the prerequisite for the
evaluation of the other points (B and X), which have a decisive impact on the values of the
hemodynamic parameters.

Within the proposed approach, the first step taken towards the detection of the C
peaks is EMD of the registered signal after initial pre-filtering. As a result, we obtain several
IMFs (their number can vary between different traces), as depicted in Figure 4. As C point
is the most prominent point appearing in the cardiac cycle, it can be extracted from the
lower-order IMFs. From Figure 4, one can infer that only the first four IMFs influence the
position of this point. Then, the function c f11, defined as

c f11 =
4

∑
i=1

IMFi, (4)

contains all necessary information to accurately estimate it. However, with regard to the
high resemblance of c f11 to the original signal containing a lot of fluctuations, estimation of
the C point based on the c f11 function alone, is quite challenging (see Figure 5). In order to
suppress fast oscillations and to make C point more pronounced, we multiply the function
c f11 by c f12:

c f12 =
3

∏
i=1

IMFi. (5)
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Figure 4. First 6 IMFs obtained from EMD of an ICG recording.
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Figure 5. The upper figure (a) represents a fragment of an ICG signal. Panel (b) illustrates the function
c f11, representing the sum of the first four intrinsic mode functions (IMFs) resulting from EMD of the
signal presented in panel (a). Panel (c) shows the function c f12 defined as the product of first three
IMFs. In the lower panel (d), the product of the signals (b,c) is depicted.

Then, by taking the absolute value of this product,

c f1 =
∣∣∣c f11 · c f12

∣∣∣ (6)

we obtain the signal in which the C peaks are easily detectable (see Figure 6). They are
associated with the points of the largest amplitudes lying above the threshold Th updated
in each iteration according to the algorithm described in [68]. Following [69], we also
assume a refractory period of 200 ms between two consecutive searches.
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Figure 6. The positions of the C peaks marked in the combination of IMFs c f1 identified by an expert
(crosses “×”) and detected by the proposed algorithm (circles “o”).

As for the B point, corresponding to the moment of aortic valve opening, it can be
identified as the first maximum preceding C point in the first derivative of the fourth-order
component IMF4′ obtained from the EEMD (see Figure 7).

0 500 1000 1500 2000 2500
Number of sample

0.04

0.02

0.00

0.02

0.04

IM
F4

'

C points Expert
B points Expert
B points Algorithm

Figure 7. The positions of B points marked according to an expert (crosses “×”) and identified by the
proposed algorithm (circles “o”).

When it comes to the X point, the lower-order components of the EEMD are respon-
sible for its position. Based on the empirical observations, we found out that following
combination of IMF3, IMF4, and IMF5 is the most useful in its identification:

c f2 = IMF3+ 2 · IMF4+ 4 · IMF5. (7)

The X point is searched for within the interval IntX :

IntX = [C, C + 0.15 · CCmean], (8)

where C is the position of the C point in the current cycle and CCmean denotes the mean
difference between two consecutive C points (mean heart rate). The c f2 function along with
the marked positions of X points identified by the algorithm is depicted in the Figure 8.
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1
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X points Algorithm
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Figure 8. The positions of X points identified by an expert (crosses “×”) and those detected by an
algorithm (circles “o”).

The above described method of B, C, and X point identification is summarized in
Table 3. We also present the main flowchart of the proposed algorithm in Figure 9.

EMD

EEMD First derivative of IMF4

Peak detection with 
Adaptive Thresholding

C POINT 

First maximum 
preceding

C point in IMF4'
B POINT

X POINT

First minimum in cf2 after 
C point found in the interval

INPUT DATA

Figure 9. A flowchart illustrating the working principle of the proposed algorithm. The input data
are decomposed with the EMD and EEMD methods. Then, functions c f11, c f12, IMF4’, c f2 of the
obtained IMFs are used to find the positions of the C, B, and X points.

Table 3. Methods of identifying characteristic points in the ICG signal.

The Characteristic Point EMD/EEMD Components Method of Identification

C point EMD 1, 2, 3, 4

Point of the largest amplitude
occurring in the combinations

of EMD lower–order
components (c f1 function).

B point EEMD 4

First maximum preceeding C
point in the first derivative of
the fourth component IMF4′

obtained from EEMD

X point EEMD 3, 4, 5

First minimum after C point
found in the combinations of

EEMD
higher–order components
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3.2. Test of the Algorithm
3.2.1. The Database

In order to assess the efficiency of the developed method, we used a publicly available
database designed for the purpose of testing ICG delineation algorithms [70]. This database
contains 48 impedance cardiography signals from 24 healthy subjects, recorded during an
experimental session of a virtual search and rescue mission with drones [70,71]. For each
subject, two 5 min signals corresponding to the baseline (registered during a passive
task) and cognitive workload (registered during a task demanding large mental effort)
states were obtained. Since data acquisition from rescuers during real missions is quite
challenging, signals are gathered during virtual sessions simulating different levels of
cognitive overload. During these sessions, a pilot needs to fly a drone following the
provided pathway and indicate a disaster area. All physiological recordings were acquired
with the Biopac: MP160 Data Acquisition Systems (Biopac Systems Inc., Goleta, CA, USA,).

All acquired traces include beat-to-beat annotations of the ICG characteristic points,
performed by an expert cardiologist. In addition, it contains, as a reference, synchronously
registered ECG signals, which facilitate the precise annotation of the cardiac events. Apart
from the raw data, signals subjected to a filtering process are also provided. The prepos-
sessing step, which is applied here, consists of two parts. At the beginning, the registered
traces are downsampled from 2000 Hz to 250 Hz. The remaining artifacts are then sup-
pressed with the adaptive Savitzky–Golay filter of order 3 [72,73]. It turns out that it
yields a good balance between the signal de-noising and maintenance of its characteristic
features [74]. Then, for each cardiac cycle, four characteristic points are indicated by an
expert cardiologist: B, C, X, and O.

3.2.2. Algorithm vs. Expert—Statistical Analysis of the Emerging Differences

The TIBCO StatisticaTM statistical package in version of 14.0.0.15 together with the
open source libraries dedicated to Python were used for the data analysis. The hypothesis
about the normal distribution of analyzed variables was verified via the Shapiro–Wilk
formula at the significance level α = 0.05. For the investigation of the statistical significance
of differences, the t-test and its non-parametric equivalent in the form of the Mann–Whitney
U statistic were used. Figure 10 summarizes the statistical comparison of the hemodynamic
parameters obtained by the algorithm and marked by an expert in cardiology. For the vast
majority of cases, the determined p-values calculated for the Shapiro–Wilk test were less
than the assumed significance level α = 0.05. For that reason, box–whisker plots character-
izing the respective quartiles are presented instead of the average values with the standard
deviations. The subplots compare the median values of selected hemodynamic parameters
obtained by the algorithm and the expert. Although the changes between respective groups
(expert vs algorithm) are relatively small, according to the Mann–Whitney U formula,
there exist statistically significant differences between the compared cases at the selected
significance level α = 0.05 (the p-values are highlighted in each subplot). The values of
selected hemodynamic parameters determined by the EMD-based algorithm are slightly
overestimated compared to the results indicated by the expert. Table 4 characterizes the
differences between median values of the compared parameters estimated by the algo-
rithm and an expert. To assess what kind of characteristic points could mostly affect the
differences between the algorithm and the expert, the accuracy values were calculated and
presented in Table 5. Following [74], ±30 ms is considered the tolerance between positions
of points annotated by the expert and those identified by the algorithm. A good agreement
can be observed for the B and C points (significantly above 90%). Simultaneously, our
results suggest that X is the most difficult point to determine automatically. Compared to
other algorithms of characteristic point determination in ICG signals, the agreement with
the expert is also the smallest in the case of the X point.
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Figure 10. The box-plots comparison of hemodynamic parameters calculated by the algorithm and
indicated by an expert.

Table 4. The median values of hemodynamic parameters estimated by the algorithm and an expert,
and the respective differences between those two groups.

Parameter Algorithm Expert ∆ALG.−EXP.

LVET 0.272 0.252 0.020
dZ
dt (max) 1.727 1.500 0.226

LVET × dZ
dt (max) 0.465 0.382 0.083

LVET (CW) 0.272 0.252 0.020
dZ
dt (max) (CW) 2.053 1.920 0.151

LVET × dZ
dt (max) (CW) 0.558 0.468 0.091

Table 5. The accuracy of characteristic point estimation via EMD-based algorithm. The comparison
of the location of points estimated by an expert with the values determined by formulas based on
IFMs. As matched locations for the expert and the algorithm, values differing by a maximum of ±7
points—approximately 30 milliseconds—were adopted.

Point Number of Well
Predicted Points

Number of
All Points

Percentage
Accuracy

B 775 779 96.92

B_CW 584 623 93.74

C 764 799 98.07

C_CW 610 623 97.91

X 690 799 88.58

X_CW 519 623 83.31

4. Discussion

This article proposes a new approach to determining characteristic points in the ICG
signal. Several algorithms for determining ICG points are described in the literature.
However, there is no comprehensive information on their effectiveness in the estimation
of important hemodynamics features, and it is difficult to decide what kind of method
is the gold standard for ICG signal characterization. Some of them rely on higher-order
derivatives, which are very noise-sensitive. Others are based on R peak detection, which
requires simultaneous recording of the ECG signal. Eventually, there are also algorithms
based on the wavelet decomposition. Although their efficiency is quite high, they are also
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computationally expensive. Here, we propose a method that does not involve additional
ECG signal analysis and is fast and accurate.

It turns out that decomposition of a signal into individual frequency modes using an
empirical technique can be a very good basis for the automatic localization of the most im-
portant points in an ICG signal. Our results suggest that the selection of specific frequency
components or the combination of these components can greatly assist in identifying the
correct location of the desired points. In the majority of cases, the estimated compatibility of
an EMD-based methodology between the expert and algorithm was within or above 90%. It
is worth mentioning that a high degree of agreement was obtained both for measurements
in the resting (reference) state and in the case of stressors dictated by a specific task. Only
in the case of the X point was there a slight decrease below the ninety percent threshold.
Note that the lower accuracy of this point identification in comparison to other methods
stems from the more strict value of the permissible tolerance between an expert and the
algorithm: (±30 ms) in this work vs. (±150 ms) in [9,75,76]. Discrepancies between an
Expert and the Algorithm are described in Appendix A.

The statistically significant differences between an expert and an algorithm were iden-
tified for all the analyzed parameters. However, the differences between the respective
median values are relatively small and may be directly related to many factors, including
sensitivity of the results to even small perturbations in the recording, which occur in the
case of a measurement during an activity. It should be emphasized that the demonstrated
significance of the differences does not necessarily translate into their physiological mean-
ing. For example, in the case of the LVET parameter, the identified difference between the
EMD-based algorithm and the expert is about 20 ms, while the permissible difference is
150 ms. In addition, some publications allow even larger expert–algorithm dissimilarity.
The proposed characteristic point extraction technique requires further improvements
to overcome some shortcomings related primarily to the determination of the X point.
The key to achieving better accuracy may be the inclusion of the removal of noise during
data preprocessing. Nevertheless, the simplicity, speed of operation of the algorithm, and
its empirical nature seem to be the overarching advantages in the context of the need to
automate the process of determining ICG characteristic points. In terms of the accuracy of
identifying the key ICG points, our results are comparable to the results obtained by the
other algorithms presented in the literature, and in some cases, they show even greater
precision. In the work by Pale et al. [74], the authors presented a methodology that allows
one to obtain accuracies of about 94.9%, 98.6%, and 90.3%, respectively, for the B, C, and X
points, comparing the output of the algorithm with the manual identification of the crucial
points by the cardiologist. In our case, the values are, respectively, 96.9%(B), 98.1%(C), and
88.6%(X). It is worth emphasizing that, in the literature, the margin of error is considered
to be about 150 ms, while in this paper, we have limited it to only 30 ms.

5. Conclusions

Despite the importance of the ICG technique in different healthcare applications,
the analysis and classification of ICG signals by applying advanced signal processing
techniques is still very limited. A new approach to identifying characteristic points (B, C,
and X) on the impedance cardiograph signal developed in this work based on ensemble
empirical mode decomposition is very promising. The algorithm is fast, does not require
simultaneous recording of the ECG signal, and yields quite accurate results. However,
there is still much room for improvement, especially in terms of the appropriate filtering
process, and the proposed algorithm has the potential to be implemented on low-power
electronic devices remotely monitoring the conditions of cardiac patients.
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Appendix A. Discrepancies between an Expert and the Algorithm

As was mentioned in the main text, some cycles, due to the misidentification of the
C point, were discarded from further analysis. We found out that the reason behind an
inaccurate detection of this point is that the signal is not sufficiently de-noised. EMD is
highly sensitive to even small perturbations in the recording, which suggests that some
additional filtering process is required before detection of the characteristic points. It is
illustrated in Figure A1, where it is shown that the addition of a simple mean filter is
sufficient to improve the detection process.

The situation is slightly more complicated when it comes to the identification of
the X point. In some cases, the X point does not fall into a well-pronounced minimum,
which can be easily mistaken with some kind of noise. Such a situation is depicted in
Figures A2 and A3. Here, the algorithm associates the X point with the global minimum
lying after C point, instead of a small local trough appearing a little bit earlier.

Similarly, as for the B point, the proposed method does not properly deal with the cases
where the distance between the B and C points is really small, as depicted in Figure A4. It
happens when the position of the B point is attributed to the notch lying just before the
maximum of the ICG wave. It also does not yield precise results in the cases in which an
expert did not properly estimate the moment of gradient change [14] (which is extremely
hard looking solely at the signal). Such a situation is illustrated in Figure A5.
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Figure A1. The positions of the C points identified in the ICG signal without (a) and with additional
filtering (b). (a) A fragment of the ICG signal (upper figure) in which one C point was missed during
the process of its identification in the c f1 (Equation (6) series. (b) The same signal as in (a) but after
application of a mean filter.

9800 10000 10200 10400 10600 10800 11000 11200 11400
1

0

1

2

3

9800 10000 10200 10400 10600 10800 11000 11200 11400
Number of sample

4

2

0

2

4

cf
2

Algorithm
Expert
Algorithm

Figure A2. An example of X point misidentification due to the hardly noticeable local minimum in
the original signal.
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Figure A3. An example of X point misidentification due to the hardly noticeable local minimum in
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Figure A4. An example of B point misidentification caused by too a small distance between the B
and C points.
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Figure A5. An example of the discrepancy between the indication of an expert and the algorithm
due to an inaccurate expert assessment of the moment of a gradient change in the ICG signal.
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