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Abstract: The simple model of an ionic current flowing through a single channel in a biological
membrane is used to depict the complexity of the corresponding empirical data underlying different
internal constraints and thermal fluctuations. The residence times of the channel in the open and
closed states are drawn from the exponential distributions to mimic the characteristics of the real
channel system. In the selected state, the dynamics are modeled by the overdamped Brownian
particle moving in the quadratic potential. The simulated data allow us to directly track the effects of
temperature (signal-to-noise ratio) and the channel’s energetic landscape for conformational changes
on the ionic currents’ complexity, which are hardly controllable in the experimental case. To accurately
describe the randomness, we employed four quantifiers, i.e., Shannon, spectral, sample, and slope
entropies. We have found that the Shannon entropy predicts the anticipated reaction to the imposed
modification of randomness by raising the temperature (an increase of entropy) or strengthening the
localization (reduction of entropy). Other complexity quantifiers behave unpredictably, sometimes
resulting in non-monotonic behaviour. Thus, their applicability in the analysis of the experimental
time series of single-channel currents can be limited.

Keywords: ion channels; stochastic dynamics; information entropy

1. Introduction

Ion channels are transmembrane proteins that fluctuate between variant open (ion-
conducting) and closed (non-conducting) conformational states. These conformational
fluctuations are called channel gating. The primary experimental source of information
about the channel gating phenomena is a patch clamp method [1]. It allows for recording a
single-channel activity in the form of time series of ionic currents (Figure 1) at controlled
conditions. Depending on an ion current amplitude, open and closed channel states are
recognized. The main characteristics of the exemplary signal, presented in Figure 1, are
common for most ion channel types.
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Figure 1. A sample representative of the short excerpt of the experimental signal registered with
the patch clamp technique (see [2] for details). The recording has the form of the time series of the
single-channel current at fixed external conditions (temperature, membrane potential, solutions,
pressure, etc.). Based on the ionic current amplitude, the functional states of the channel can be
recognized as open (conducting) and closed (non-conducting). The typical ionic current amplitudes
are several to tens of picoamperes. The maximal residence times in open and closed times most
frequently do not exceed tens of milliseconds.

The Markovian diagrams represent the standard kinetic model of these conformational
changes with specific interconnections between the particular states and the respective
transition probabilities [3–5]. In the simplest case, only one open and one closed state can
represent channel activity, but frequently, more a sophisticated approach involving several
open/closed states is addressed. The Markovian approach to model gating dynamics
remained the most popular throughout the years [6]. It allows us to correctly describe
many kinetic characteristics of the empirical system, such as the open-state probability or
dwell-time distributions of open and closed channel states. Nevertheless, the dynamical
properties of channel gating still require clarification in many aspects. The ion current
sequences are the largest source of information about the channel’s system dynamics. The
patch clamp recordings require appropriate data analysis methods, considering their highly
complex characteristics and nonlinear properties [7,8].

Quantifying the physical system complexity is a tricky task. Ludwig Boltzmann
historically introduced a measure of the number of possible states for the microscopic
world. He connected it to Rudolf Clausius’ concept of entropy and the irreversibility of
macroscopic processes. Entropy lies at the heart of the second law of thermodynamics,
which states that entropy cannot decrease with time for isolated systems, which implies
its maximum for the equilibrium state. Entropy is a thermodynamic property that can
measure the amount of thermal energy in a system that is unavailable for doing useful
work. It is now associated with disorder, randomness, or uncertainty, rather than the actual
state-counting process. In such a case, it can serve as a measure of complexity—the more
complex the system is, the higher entropy possesses. In 1948, Claude Shannon introduced
the measure for missing information as an analog to the thermodynamic entropy [9]. Since
then, information entropy has become a key concept for information theory. It has gained
considerable popularity and effectiveness among the range of techniques that can be applied
in the context of biological signals. A phenomenon of entropy measures is associated with
its ability to characterize the rate of creation of valuable information in a dynamical system,
identifying the level of uncertainty or the possibility of an indirect description of the number
of available states, which can have a direct impact on many biological aspects [10]. The
different kinds of entropy measures, in the forms of Shannon, Kolmogorov, approximate,
or sample entropy, are involved in the analysis of electrophysiological signals, including
cardiac rate variability [11,12], electromyography (EMG) [13], and electroencephalography
(EEG) [14], to name but a few.

The ion channel signal reflects the complexity of the channel’s switching among its
available states. Only a few reports have addressed the entropy-based patch clamp data
analysis [2,15,16]. In [15], the values of the sample entropy of the signals, which charac-
terized the large conductance calcium-activated potassium (BK) channel’s activity, were
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investigated in the context of effects of membrane strain and the possible changes of mem-
brane morphology after a series of suction impulses. The work [16] describes the utilization
of information entropy in distinguishing the patch clamp signals of mitochondrial BK
channels (mitoBK) obtained for different cell types. In [2], the authors engaged the idea
of entropy in the classification of mitoBK channels activity at changing experimental con-
ditions (voltages). In addition, the authors used multiscale entropy to select the optimal
sampling frequency rate of the ion current recordings.

Deterministic forces and stochastic thermal fluctuations shape the single-channel
activity. In the mentioned works, entropy values were based only on experimental ion
channel recordings. The complexity description gave combined characteristics of the sig-
nal, being both shaped by the deterministic interactions associated with protein–protein,
protein–ligand, or protein–lipid interactions, as well as the thermal fluctuations of the
helices forming the channel and its membrane surroundings. It is challenging to extract
information about the relative impact of deterministic forces and stochastic thermal fluc-
tuations on channel gating and signal entropy from the experimental data. Therefore,
implementing the information entropy for the patch clamp recordings analysis has been
based only on finding the differences in signal complexity with appropriately changed
experimental conditions. In this work, we decided to go a step further and provide a more
detailed description of how the properties of conformational space and the number of
possible states of the channel influence entropy.

To that aim, we use data obtained in a simulation of a relatively simple Markovian
channel gating model and investigate the effects of the changes in conformational diffusion
space parameters on signal complexity. The investigated parameters will refer to the
channel’s energetic landscape that governs the open–closed fluctuations in a confined space.
Moreover, we decided to provide a signal description using different entropy measures.
Our choice is concentrated on two leading groups of entropy features. We consider the
standard Shannon information entropy and its frequency-based analog, in the form of
spectral entropy. These two measures are based on probability distributions or power
spectral density functions, and the interpretation of their values is limited to the statistical
description of data. For the comprehensive characterization of ion channel activity, we
decided to also select the specific kinds of entropy that can investigate the information
rate considering the system’s dynamics. Sample entropy (SampEn) is one such measure,
with proven effectiveness in biological signal classification [17] and the analysis of EEG
and EMG signals [18]. However, popular entropy measures can sometimes underestimate
the valuable information in complex data sets. The slope entropy, for instance, has a higher
discriminating power in application to complex and numerically demanding data [18].
Since its introduction in 2019, the slope entropy algorithm has gained popularity for
biological time series analysis. Moreover, the measure of slope entropy was successfully
applied in fever diagnoses [19]. It was also a valuable feature in the machine learning ECG
signal classification [20]. The method has been used for other types of signals, such as
bearing fault signals [21] and ship-radiated noise signals [22].

Regarding the effectiveness of these techniques, we decided to set the slope and
sample entropy results together to test the possible scenarios related to the potential change
of information loss in such a complex ion channel system. In particular, we will test the
response to the changes in the energetic landscape of conformational states (corresponding
to the stability of available channels’ open and closed conformations) or the relative noise
intensity (temperature).

2. Methods and Model
2.1. Information Analysis

The original Shannon idea of the signal description by its information content was
later extended to new concepts of complexity measures, such as Rényi [23], spectral [24],
Kolmogorov [25], approximate [26], sample [27], permutation [28], fuzzy [29], phase [30],
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and slope [18], to name but a few. It is now broadly used in almost all fields of science;
see [31–34] and references therein. Here, we will focus on four selected quantifiers.

2.1.1. Time and Frequency Domains

On average, the entropy of a signal X is related to the spectrum of the k potential states.
For the probability distribution, p(X) of all possible states characterized by the probability
pk of the k–th state, the Shannon entropy HX is given by the average of the logarithm of
the distribution

HX = −∑
k

pk log(pk) (1)

with ∑k pk = 1. For any experimental signal, the simplest way to determine a sample
probability distribution is to take the data and determine its frequency, for example, by
calculating the histogram and normalizing it by the total number of samples.

Spectral entropy (S) is the frequency-domain analog of the time-domain characteristics
presented above. The power spectrum density (PSD) plays the role of the probability pk.
The spectral entropy is given in terms of the normalized PSD Q( f ) = PSD( f )/ ∑ f PSD( f )

H f = −
1

log(F) ∑
f

Q( f ) log Q( f ) (2)

where F stands for the number of all frequency components. PSD is usually estimated
with a standard (fast) Fourier transform. Because the frequency components are linearly
independent, this measure is not sensitive to signal nonlinearities.

2.1.2. Phase-Space Methods

The methods for estimating information loss based on probability distribution or PSD
are easy to apply, although they lose some critical features of usual complex and nonlinear
dynamics. For instance, HX would not consider the possible autocorrelation, and H f will
evaluate only the linear features. The system’s dynamic diversity should be a key compo-
nent for the typical analysis. Kolmogorov developed the method to introduce the effect of
the system’s dynamical changes in 1950’. The metric entropy uses correlation integral for
a dynamical complexity estimation [35,36]. The actual method used in calculations looks
for the number of repetitions of the vector patterns in the entire signal. As the original
concept addresses the infinite vectors and data lengths, but real-life experiments produce
only finite data lengths, the technique to determine the changing system complexity was
first proposed by Pincus as approximate entropy [26]. It quantifies the tendency of signal
chunks to repeat.

The weakness of the original formulation of the algorithm for obtaining metric en-
tropy (inclusion of self-matches) was corrected later, in terms of sample entropy (Sam-
pEn) [27]. For the time series X = {xi}N

i=1, which consists of N data points, a set of vectors
Um(i) = {xi, . . . , xi+m−1}N−m+1

i=1 represents the m consecutive values of a series, starting
with the i−th data point. The difference between two sets Um(i) and Um(j) is taken as the
maximum metric

d[Um(i), Um(j)] = max
k=0,...,m−1

(|x(i + k)− x(j + k)|). (3)

The probability of an exact match of m consecutive vector elements is basically zero for the
experimental data. To confirm the similarity between two sample vectors Um(i) and Um(j),
one has to introduce the tolerance threshold r heuristically. Usually, it is taken between 10%
and 20% of the standard deviation σ of the signal values [37]. If the absolute difference of
any pair of the components is larger than the chosen similarity criterion (distance threshold)
d[Um(i), Um(j)] > r, the vectors are not similar.
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The probability Cm
i (r) that the i–th template vector is close to any other is given by

Cm
i (r) =

nm
i (r)

N −m
(4)

where nm
i (r) is a number of other j–vectors (j = 1, . . . , i− 1, i + 1, . . . , N −m) that are close

enough to the pattern i–vector. The average over the all pattern vectors Um(i) constitutes
the probability Cm(r) that any two vectors are within r of each other

Cm(r) =
1

N −m + 1

N−m+1

∑
i=1

Cm
i (r). (5)

The negative logarithm of the conditional probability that two patterns that are similar for
m points remain akin for m + 1 points defines the sample entropy

SampEn(m, r, N) = − log
[

Cm+1(r)
Cm(r)

]
(6)

For the above calculations, j 6= i. In the following, the values of embedding dimension
m = 4 and r = 0.2σ have been used.

The SampEn algorithm considers the intrinsic states of the system dynamics and
uses the template vectors of size m as the patterns. It does not, however, reflect the point-
to-point changes through the signal. Such issues are embedded in the idea of the slope
entropy algorithm, which is based on the signal amplitude and can be characterized by the
following steps. Similarly to the SampEn algorithm, the time series X = {xi}N

i=1 is divided
into k sub-sequences Um(i). The two additional threshold parameters δ and γ are arbitrarily
defined to assign the different symbol patterns that characterize the vertical increments
between consecutive samples. Typically, γ = 1 and δ = 0.001 correspond to the 45◦ and
0.05◦ slope of the line connecting two successive points, respectively. In the standard
version of the algorithm, the division covers the five basic patterns: {+2,+1, 0,−1,−2}.
If xi ≥ xi−1 + γ, and the assigned symbol is +2. For the xi−1 + δ ≤ xi < xi−1 + γ, the
symbol +1 is used. For tiny increments xi−1 − δ < xi < xi−1 + δ, the assumed symbol is 0.
Considering the mirror image of symbols +1 and +2 for analogical negative decrements,
we can assign the obtained amplitude differences to the patterns −2 and −1 for γ = −1
and δ = −0.001, respectively.

There are 5m−1 types of pattern sequences with the number of each type {ki}n
i=1. For k

unique template vectors, the probability of occurrences of i–th pattern is given by Pi =
ki
k .

Using the standard entropy form, the slope information measure reads

SlopEn = −
n

∑
i=1

Pi log Pi (7)

The method to keep the SlopEn values within the usual [0, 1] interval was proposed
recently [38]. In this work, as suggested, we would use the minimum heuristic bound and
the analytic maximum to normalize the calculated values.

Shannon analyzed the electronic signal transmission, so his definition of entropy
naturally uses two as the base of logarithm and, in turn, bits as the unit of the information
loss. In this work, we avoid including extra constants and use a natural logarithm, which
results in natural units or nats.

2.2. Ion Channel Current Dynamics

The functional dynamics of the ion channel are relatively simple. The channel is either
conducting or not. In other words, the current is either flowing through the channel or
not. In such a case, the channel can remain in either an open or closed state. The simplest
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possible scenario assumes one open state (O1) and one close state (C2), so the channel can
only alternate between the two states [39] with the transition rates k1−2 and k2−1

O1
k1−2



k2−1
C2

The time the channel spends in one of the states is governed by the exponential
distribution characterized by the average dwell time in the specific state τ = 1/k [39].

f (t) =
1
τ

exp
(
− t

τ

)
(8)

For single-channel kinetics, we can estimate the average voltage rather precisely,
although the intrinsic value will always fluctuate. The statistical characteristics of such
fluctuations are well-known [40].

The actual dynamics can and is usually much more complex. We can often distinguish
several open (O1, . . . , Oi) and closed (Ci+1, . . . , Cn) states [41]. The transitions between
states are not always allowed. More complex distributions can describe the fluctuations of
the recordings of ion current in a given state. As an example, one can mention α−stable
Levy distribution. On top of that, the fluctuations can exhibit considerable correlations.
Despite the rich complexity of the experimental data and the actual biosystems, there is
no necessity to address full, and often highly complicated, mechanisms to describe some
fundamental problems. Here, we model such issues as simply as possible. We want to ask
how the modification in the energetic landscape of conformational states influences the
total complexity of the system and how the chosen measures will react to such changes. We
also would test the model and the measures mentioned above against the temperature. We
will probe the proposed characteristics with a system with artificially changed complexity.

2.3. Stochastic Model

We model channel gate dynamics with stochastic evolution equations [42–44]. We
map the ion channel dynamics onto the overdamped Brownian particle moving in confined
potential and driven by thermal noise. The dynamics of such a particle is governed by the
Langevin equation

Γẋ(t) = −V′(x) +
√

2ΓDξ(t) (9)

where the prime denotes a differentiation with respect to the argument of V(x) and the
dot means a differentiation with respect to time t. Thermal fluctuations are modeled by
the zero-mean δ-correlated Gaussian white noise ξ. This noise term obeys the Einstein
relation with the noise correlation given by 〈ξ(t)ξ(s)〉 = δ(t− s). Two constants, Γ and
D = kT, stand for the friction coefficient and noise intensity, respectively. Capital T is the
temperature, and k symbolizes the Boltzmann constant. Without the loss of generality, we
will keep the friction coefficient equal to one (Γ = 1) in what follows.

The particle can take two distinct states corresponding to the ion current flowing (open
state, xO) and not flowing through the channel (closed state, xC). For the confined potential,
we consider a simple quadratic form

V(x) = b(x− xs)
2 (10)

with minimum located at the xs = xO or xC. The operational state randomly changes from
open to closed, according to dwell times distribution (8). Here, it corresponds to a change
of the potential minimum xs. The parameter b defines the slope of the potential walls
and, in turn, influences the localization of the particle and, as such, mimics the change of
the energetic landscape of conformational states. For b < 1, the potential walls are less
steep, which allows the particle to move more freely around the minimum. If, however,
b > 1, the steepness of the walls grows, and travel further from the minimum requires
higher energies.
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The model landscape is schematically depicted in Figure 2. We performed numerical
simulations of the Langevin Equation (9) using an Euler algorithm with a step size of 10−2.
We always draw the first state uniformly. The particle would sit in one of the potential
wells (states) for a certain period τ1 drawn from the dwell-time distribution of the current
state. Intra-well motion is driven solely by the temperature-dependent Gaussian white
noise. After time τ1, it will change the state to a new permitted one, again for a random
time τ2, and again execute the random motion inside the potential well. This sequence of
randomly drawing the next (permitted) state and performing inside the selected potential
well will be repeated until the simulation’s total time (Tt, here = 100) passes. In such a
case, we stop the generation of the first trajectory and repeat the process a minimum of
100 times. It gives us statistics of 100 independent runs, each consisting of 100.000 data
points. Further enlargement of the number of runs or data points keeps the statistics the
same and only unnecessarily increases the computational cost.

Figure 2. The schematic representation of the ion channel activity modeled utilizing the Langevin
Equation (9). The random switches between the states represent the simplified Markov kinetics.
The steepness of the potential walls, ruled by the parameter b, mimics the change of the energetic
landscape of ion channels. In the simplest case, only one open and one closed state is assumed.
Intra-well dynamics is driven by the δ-correlated Gaussian white noise of zero average.

3. Results

The representative trajectories obtained by model simulation are presented in Figure 3.
As one can see, the overall signal characteristics mimic the patch clamp recordings. The
effects of the steepness of potential wells (b) can be observed in the form of a varying range
of the single-channel current amplitudes, which correspond to the open and closed states,
at a fixed noise level (determined by the D parameter). Thus, the model is anticipated
to enable the imitation of the experimental ionic current distributions after appropriate
parameter optimizations.

time

io
ni

c 
cu

rre
nt

b=0.5

b=1

b=2

Figure 3. Sample trajectories (ionic currents) generated using Langevin Equation (9) and the simple
scheme of one open O1 and one closed C2 states. The average dwell times for open and closed states
are τ̂1 = 1 and τ̂2 = 10, respectively. In such a case, the only allowed transitions happen between the
O1 (bottom) and C2 (top) states. Other parameters read D = 0.01, b = 0.5, 1, 2.
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The following results of the numerical simulations are presented for the most straight-
forward possible setup with only two allowed states—one open O1 and one closed C2—as
the proposed complexity measures are not sensitive to the number of channel states (if
they all exhibit the same characteristic O/C conductance). Regardless of the ion channel
kinetics’ number of states, the ionic current would always have the same value in any open
(or similarly closed) states. The possibility of channel current sublevels is not considered
here, since it is not very often exhibited in biological systems. The proposed measures are
all based on the values in the data train, and since there is no difference in values between,
say, the states O1 and O2, one will not see the change in entropy.

3.1. Temperature Influence

Calculating the information entropy for white Gaussian noise, for which all the pos-
sible states are allowed, would result in the maximum entropy value [31]. In terms of
Langevin dynamics, this situation describes the free Brownian particle with no potential
force present. In such a situation, with no other energy scale to compare to, the effective
information loss will be the same, regardless of the noise intensity (heat bath temperature),
and the function of (any) entropy versus D will remain constant for any value of D.

If, however, one would reduce the ability of travel for the particle by placing it inside
the entropic potential, the whole picture would change. The Brownian particle cannot pass
through the barriers of the proposed quadratic potential and remains located around the
potential minimum, regardless of the open or closed state. The increasing temperature
will increase the thermal energy available for the particle. This, in turn, would enable the
particle to travel further against the gradient and visit distant locations in the potential
well, causing global complexity to rise.

We can confirm the expectations for three of the four selected entropy measures. In
Figure 4, the four selected entropy measures (Shannon, spectral, sample, and slope) are
shown versus the noise intensity D. In this scenario, the particle deals with the energy
barrier, which causes the particle to sit around the potential minima separately for the
open and closed states. The value of Shannon entropy is constantly rising with increasing
thermal energy D, to the point where it saturates for the intensity D ' 2. Spectral and
sample entropies remain constant for a broad selection of intensities D. The former is
slightly more sensitive to temperature change and increases around D ' 0.05. The latter
rises visibly for D ' 1. The slope entropy behaves somewhat differently and reveals a
non-monotonic tendency with increasing D. Initially, (D ∈ [0.001, 1]) drops slightly. Near
unity, it reaches a minimum and then starts to increase. The existence of extrema in the
complexity measure is usually responsible for the occurrence of critical phenomena. Here,
we could not find any such behavior in the vicinity of D = 1, and the presence of the
minimum remains the puzzle. As the SlopEn algorithm rather aggressively affects the
information carried in the data, this effect may be caused by the algorithm’s structure.

10 3 10 2 10 1 100 101

D

0

1

2

3

4

En
tro

py

Shannon
Spectral
SampEn
SlopEn

Figure 4. Four selected entropy measures—Shannon (solid blue line), Spectral (dashed orange line),
Sample (dashed-dotted green line), and Slope (dotted red line)—presented versus the noise intensity
D (or temperature) for the simplest setup. Steepness parameter b = 10.
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Above the noise intensity D ' 5, the structure of the signal is no longer similar to
the one registered in the patch clamp experiment, and the analysis becomes meaningless.
In Figure 5, we present the trajectories (ionic currents) for the selected values of the noise
intensity, together with the corresponding distributions (histograms). Please note the
vanishing separation of states in the distributions for higher noise intensities (D = 5
and 10).

Figure 5. Sample trajectories of Brownian particle motion, which mimics the ionic current generated
with the Equation (9) for six values of the noise intensity (bottom to top) D = 0.01, 0.1, 1, 2, 5, 10. On
the rhs, the corresponding histograms are plotted. Please note the vanishing two-state characteristics
for the two highest values of D = 5, 10. The landscape parameter is set to b = 10. Each trajectory
consists of 2000 data points.

3.2. Localization

Reducing the ability to travel should mean reducing the information complexity and
randomness of the system, as we limit the number of possible states of the Brownian particle.
In our case, the most direct possibility to influence the localization will be adjusting the
landscape parameter b of the potential (10). In Figure 6, we present all four selected entropy
measures (colors and line types stay the same as in Figure 4).

10 1 100 101 102

b

0.0

0.2

0.4
D = 0.01

0.1 HX

Hf

SampEn
SlopEn

10 1 100 101 102

b

0.1

0.2

0.3

0.4
D = 0.1

0.1 HX

Hf

SampEn
SlopEn

Figure 6. Four selected entropy measures—Shannon (solid blue line), Spectral (dashed orange line),
Sample (dashed-dotted green line), and Slope (dotted red line) presented versus the steepness factor
b (or landscape parameter) for the simplest setup. The left and right panels correspond to noise
intensities D = 0.01 and 0.1, respectively. Shannon entropy has been scaled ten times down for
visual clarity.

Increasing the parameter b causes the narrowing of the potential walls; see Figure 2
for details. It will also cause the probability distribution of possible states to narrow.
In Figure 7a, the distributions of the positions of the Brownian particle are plotted. By
inspecting the graphs, one can expect the descending Shannon entropy measure, which
depends on the number of possible states (the width of the histograms).
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b = 0.5b = 1 b = 2 b = 10
X

p(
X)

(a)

0.5 1 5 10 50
frequency [Hz]

10 5

10 3

10 1

PS
D 

[V
**

2/
Hz

]

 D = 0.01
D = 0.1

(b)

b=0.5
b=1
b=2
b=10

Figure 7. (a) The distributions of the positions of the Brownian particle, together with the correspond-
ing potential shapes. (b) The power spectrum densities of the Brownian particle mimicking ionic
current presented for two different noise intensities D = 0.01 (solid lines) and D = 0.1 (dashed lines).
Both characteristics are plotted for four values of the landscape parameters b = 0.5 (blue), 1 (orange),
2 (green), and 10 (red).

The narrower the distribution, the fewer states accessible, and the lower the Shannon
entropy, as it is solely given as a function of the distribution. Therefore, it is not surprising
that the Shannon entropy curve decreases monotonically as a function of the increasing
value of b, regardless of the scaled temperature considered—cf. solid blue lines on both
panels of Figure 6.

Spectral entropy, on the other hand, behaves somewhat unexpectedly. The PSD
inspection can explain its increase—cf. Figure 7b. The area under the curve increases
with parameter b, regardless of the noise intensity. This, in turn, should increase entropy
measure based on these characteristics—cf. the orange dashed line in Figure 6. However,
for higher noise intensity D = 0.1, the tendency is not monotonic, and the H f assumes a
minimum in the vicinity of b = 1.

Sample entropy (dashed-dotted green line in Figure 6) is a decreasing function of the
growing landscape parameter for low noise intensity D = 0.01, the behavior known for
the classical HX. The lower complexity is somewhat expected for an algorithm based on
estimating the frequency of the possible template vectors. The narrower the potential wells,
the lower number of unique patterns. For higher scaled temperature, D = 0.1, SampEn
surprisingly reveals a maximum in the vicinity of b = 1. Similarly to H f , one can expect a
somewhat critical phenomenon around that value [45,46].

In contradiction to the temperature dependence, slope entropy remains constant for
any of the examined values of b. It suggests that increments of ionic currents over time
are statistically identical for potential conformational change. Still, one can notice this
measure’s lower, although still constant, value for D = 0.1. Based on the increments,
rather than the values themselves, the information loss estimate remains insensitive to
localization changes.

4. Discussion

The movement of ions across a biological membrane through channels is passive,
meaning it occurs without the input of energy from the cell. The electrostatic potential
gradient and the difference in ion concentration between both sides of the membrane
drive this movement. Active ion transport is the movement of ions across a biological
membrane against the gradient from an area of lower concentration to an area of higher
concentration. This process requires energy input from the cell, often in the form of
adenosine triphosphate. The energy input pumps ions across the membrane against their
gradient, creating a concentration and an electrochemical gradient. Active ion transport
plays a crucial role in maintaining ionic balance and cell homeostasis. Examples of active
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ion transport include the sodium–potassium pump and the proton pump. Most works
would model one of the mechanisms employing continuum or polarizable models [44] and
references therein.

In this work, we focused solely on modeling the ionic current without first assuming
the type of transport across cell membranes. We built a simple model with two-dimensional
parameter space {D = kT, b} by means of the overdamped Langevin equation. The
main goal was to describe the potential effects of temperature and the channel’s energetic
landscape for conformational changes on the ionic current’s complexity without going into
unnecessary model details. To accurately describe the information entropy of a biosystem,
we used two classic measures of randomness, Shannon and spectral entropies, as well as
two relatively new quantifiers that are very successful in the classification of biological
signals, sample and slope entropies.

The Shannon entropy (HX) exhibits typical, predictable behavior when we force the
system to change the number of possible states, either by increasing the temperature (HX
is also increasing) or by forcibly increasing the location of the Brownian particle (HX
is decreasing). The spectral entropy behaves normally with temperature changes and
increases as we heat the system. It is slightly less predictable for changes in the location
of the Brownian particle. For particles with a reduced possibility of random motion, it
is expressed in increased entropy based on the PSD for relatively low temperatures. For
higher temperatures, the randomness characteristic shows a minimum for a specific value
of the shape of the potential well.

Complexity measures based on system state vectors calculated for raw values directly
from the data seem less predictable than classical counterparts. The sample entropy
for the temperature dependence behaves similarly to the classical Shannon measure and
increases with the temperature, showing an increase in the unpredictability of the biosystem.
Additionally, similar to HX, it reacts to the restriction of the particle’s motion, showing a
decrease in entropy for particles restrained by the possibility of visiting states distant from
the minima, at least for lower temperatures. For higher temperatures, where the position
close to the minimum is not so clear, and the particles can travel much higher along the
potential walls, SampEn shows a maximum for the selected potential configuration. There
may be a critical phenomenon for the dynamics, although we have yet to find any during
careful examination of the trajectories and state vectors. Slope entropy exhibits slightly
different behavior with increasing temperature. We find a shallow minimum in the D
function for this characteristic. It seems surprising that this measure does not respond to
the increase in the location of the Brownian particle. It can be explained with the same
probability of occurrence of increments of the ion current value.

5. Conclusions

The effects of two parameters affecting single-channel gating on the complexity of
the corresponding time series of ionic currents have been analyzed. In particular, we
analyzed the effects of temperature and steepness of potential wells separating a channel’s
open and closed functional states on the values of signals’ information entropy. The first
analyzed parameter, scaled temperature D, is mostly related to the signal-to-noise ratio
in the experimental patch clamp recordings. The second one, b, describes the effects of
energetic and spatial constraints on the channel gate dynamics. Due to the fact that both
aspects are hardly controllable in the biological system, our studies are performed on
the simulated data, where the mechanism is ruled by the popular two-state Markovian
approach [1]. The simulated current trajectories allow us to directly observe the effects
of thermal fluctuations, which represent the perturbations within the recordings of the
single-channel activity, as well as the gating constraints on the characteristics of the signal
representing the single-channel activity. The signals’ entropy was calculated by four
different measures (Shannon, spectral, sample, and slope entropies), and the obtained
results allow us to observe the changes in the signals’ complexity.
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The increase in temperature should be gathered by the increase of entropy. In turn,
the higher restrictions for the conformational diffusion, represented by the b parameter, are
anticipated to lower the complexity. These predictions are based on the thermodynamic
considerations of the possible availability of states and the complexity of the channel cur-
rent values at planned conditions. Our results allow us to conclude that only the Shannon
definition provides an entropy measure that enables us to directly reflect the relations dis-
cussed above. Thus, the reliability and performance of the Shannon entropy in the analysis
of time series describing the single-channel gating dynamics can be highly rated and recom-
mended. The results obtained by the other entropy measures are more tricky or precarious.
Therefore, their utility in ion channel-dedicated studies needs further examination.

Additional current states found in the literature (as ”sublevels”) can be incorporated
to make the model more universal. Including additional open and closed states of different
characteristic conductance could increase the randomness of the model, which can better
imitate the recorded currents flowing through some ion channel types in the biological
membranes. This can lead to a better understanding of ion transport processes and how
they contribute to the functioning of biological membranes.
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