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A B S T R A C T   

We analyze the activity of large-conductance voltage- and Ca2+-activated potassium channels located in the inner 
mitochondrial membrane (mitoBK) from human dermal fibroblast cells. The ion current activity registered via 
the patch-clamp technique was taken into consideration. At the preliminary stage, we performed an in-depth 
analysis of the signal power spectrum to find an optimal sampling frequency and study the impact of different 
sampling on changes in the information hidden in the signal. We found the optimal 10 kHz sampling frequency 
for the fibroblast’s mitoBK currents sequences. Interestingly, as the signal sampling rate increases, we can 
observe a decrease in entropy values. The application of Multiscale Entropy analysis enabled a practical clas-
sification of single-channel current traces at various membrane potentials. Using the machine learning tech-
niques such as K-Nearest Neighbors and Support Vector Machine, optimized by the Stochastic Gradient Descent 
algorithm with Sample Entropy values as inputs, allowed us to assess the more outstanding accuracy scores for 
the chosen classifiers at membrane the hyperpolarization than at its depolarization.   

1. Introduction 

There is no overall consensus on the definition of complexity. In an 
effort to understand the complex phenomena hidden behind the ex-
periments, every now and then, measures for a description of changing 
system complexity from data are proposed [1]. Ludwig Boltzmann 
explained Entropy as the measure of the number of possible microscopic 
states of a system that relates to the macroscopic state of the system. In 
information theory, Entropy is seen as the rate of generation of new 
information in discrete signals [2]. It quantifies the probability density 
function of the distribution of the measured values, portraying the static 
properties of the system. The amount of uncertainty for the experiment 
which have the possible result’s probabilities P = {p1,p2,…,pn}, is called 
the Shannon Entropy H of the distribution P and is given by the negative 
average of the logarithm of the distribution 

H = − 〈logP〉 = −
∑n

i=1
pilogpi (1) 

Nowadays, technology allows measuring biological systems with 
high precision. The ever-decreasing prices of mass storage byte allow for 
the recording and deposition of terabytes of measurement data. Also, 
quickly increasing computer power makes the situation tempting to 
study densely sampled recorded signals. However, maintaining high- 
precision recordings is not only redundant but often leads the conclu-
sions astray. This work raises the problem of selecting the appropriate 
sampling frequency needed to obtain as much valuable information 
about the signal as possible. In the context of information entropy, this 
aspect seems to be of great importance. In some situations, less is more, 
as we will illustrate this issue with the recordings of the ion channels’ 
activity. 

Dermal fibroblasts are predominant cells within the dermis layer of 
skin [3]. They play a crucial role in the regulation of skin physiology and 
pathology, including production and organization of connective tissue, 
which allows for recovery of the skin from injury [4]. Fibroblasts also 
have secretory functions, i.e., they release multiple growth factors and 
cytokines, which are relevant in the stimulation of cell proliferation and 
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apoptosis, immune responses, and generation of inflammatory processes 
as well as production and organization of the extracellular matrix [5]. 
The proper realization of the mentioned functions frequently depends on 
mitochondrial energy metabolism. In turn, ion channels’ activity is a key 
factor in mitochondrial metabolism, the efficiency of oxidative phos-
phorylation, and cytoprotection. It has been proposed that potassium 
transport through the mitochondrial inner membrane via mitochondrial 
potassium channels is an essential player in cell life and death [6]. From 
this perspective, fibroblasts [7], and particularly the mitochondrial po-
tassium channels, can be considered as drug targets [8]. 

In this work, we analyze the activity of the large-conductance 
voltage- and Ca2+-activated potassium channels (mitoBK channels) 
present in mitochondria of the primary human dermal fibroblast cell 
line. Due to their relatively sizeable single-channel conductance (up to 
300 pS), they can very rapidly and efficiently regulate the mitochondrial 
membrane potential, respiration, and production of reactive oxygen 
species [6]. The mitoBK channels are encoded by the Kcnma1 (Slo1) 
gene, which is the same as their cell membrane counter-parts BK which 
had been broader characterized hitherto [9]. Despite the genetic match, 
the exonic composition of the mitoBK channels can significantly vary 
from the ones expressed in the cell membrane due to alternative splicing 
or post-translational modifications. Most importantly, the mitoBK 
channels are expressed when the Kcnma1 undergoes splicing to the DEC 
isoform [10], which implies some functional differences between the 
channel variants from the plasma membrane and the mitochondrial 
membranes. Despite the existence of the cryo-EM structures of the Slo1 
channel from the plasma membrane [11], the molecular structure of the 
mitochondrial channel variant is still not available. Thus, regardless of 
the existence of some initial studies on the stable BK channel confor-
mations which were performed by means of molecular dynamics [11], 
their real utility in the context of mitochondrial channel variants can be 
disputable since there is no one-to-one structural correspondence be-
tween the BK and mitoBK channels. From this perspective, the best so-
lution to make some basic inferences about the mitoBK channel system 
dynamics is to carry out a detailed analysis of the channel activity in a 
natural timescale of the process. 

The electrophysiological techniques, such as patch clamp, allow us to 
capture ions’ movement through single-channel proteins in real-time 
[12]. The recorded signal, being a series of single-channel currents, re-
sembles a channel protein’s conformational diffusion. This kind of 
diffusion determines the complexity and, generally, the observable 
structural features of the patch clamp time series. One can assume that in 
most cases, the channel’s conformations are sufficiently distant from 
each other structurally and energetically, to notably differ from the 
other ones by current amplitude, lifespan, or possible system of 
conformational switching enabling to enter a given state and exit it. 
Thus, the presence and abundance of distinct channel conformations are 
suspected to affect the complexity of the experimental data. 

The ion current through mitoBK channels is characterized by a high 
degree of complexity, largely dependent on the measurement condi-
tions. Thus, despite long-term studies on gating machinery, not all as-
pects of the channel’s activity mechanism are already resolved. As 
mentioned before, to obtain comprehensive knowledge about the sys-
tem, we take into consideration the dynamical diversity of mitoBK ion 
current time series. In this work, we analyze the entropy of single- 
channel data registered at different levels of hyper- and depolarization 
of the membrane. 

The information-based measures such as Spectral Entropy (SEN) or 
Sample Entropy (SE) and its multiscale variant - Multiscale Sample 
Entropy (MSE) [13,14] give valuable knowledge about the system’s 
ability to adapt in the ever-changing environment and has been suc-
cessfully applied in an extensive range of biological data analyses, also 
in the different types of electrophysiological signals [15–17]. SEN 
quantifies the energy distribution in the frequency domain, illustrating 
the static complexity in a like manner to the Shannon Entropy. On the 
other hand, SE and its multiscale version MSE evaluate the system’s 

dynamical complexity. However, a relatively low number of works ad-
dresses the information entropy in context of the ion channels activity, 
particularly BK channels or their mitochondrial analogues (mitoBK) 
[18–20]. The investigation of signal complexity employing Entropy 
measures can ensure a deeper insight into the actual character of the 
mitoBK biosystem. The activity of the channel protein is suspected to be 
regulated by interacting mechanisms that. 

• can operate across multiple spatial and temporal scales, e.g., move-
ment of the functional domains of the channel vs. fluctuations of the 
membrane or protein–protein interactions,  

• may contain deterministic and stochastic components, e.g., 
Coulombic or Lennard–Jones interactions, which influence gating, 
vs. thermal fluctuations within the pore–gate domain. 

Considering the MSE method’s potential utility in studies of ion 
channel dynamics, its application in the patch-clamp signal analysis 
allows evaluating the relative complexity of a switching mechanism 
between the channel microsystem substates (stable or metastable con-
formations) at given external conditions. The higher values of the en-
tropy, the more intricate mechanism should govern the ion channel 
protein’s conformational diffusion. Moreover, the changes of entropy 
with the timescale enable us to infer whether, with raising observation 
time, new complex structures are unraveled within the signal or not. 
This may be interpreted in terms of the existence of large-scale factors 
affecting the single-molecule dynamics, as the large-scale membrane 
fluctuations. For more accurate classification of the analyzed time series 
concerning the Entropy values over the range of different scales, the 
classification algorithms were implemented in the form of the K-Nearest 
Neighbors technique (KNN) and Stochastic Gradient Descent (SGD) 
method. 

This work is organized as follows. In the first subsection of the next 
part we briefly explain the experimental setup of obtaining the re-
cordings of single-channel currents in mitoBK channels. In the second 
subsection one we introduce all addressed quantifiers of complexity and 
the methods of the numerical analysis of data. In the Results section the 
introduced characteristics are calculated for the data sampled at the 
optimal frequency of 10 kHz. The selection of the aforementioned fre-
quency is elaborated in detail as well. In Section 4 the MSE and its 
statistical analysis is provided. Section 5 shows the possible separation 
of recordings at different membrane potentials. The manuscript ends 
with the discussion and acknowledgments. 

2. Materials and methods 

2.1. Experiment 

2.1.1. Cell culture and mitoplast preparation 
The mitoBK channels investigated in this work were isolated from 

the primary human dermal fibroblasts cell line (HDFa) [6], which was 
available commercially (ATCC-PCS-201–012 line). In this aim, fibro-
blast cells were cultured in DMEM medium supplemented with 10% 
fetal bovine serum, 2 mM L-glutamine, 100 U/ml penicillin, and 100 μg/ 
ml streptomycin at 37◦C in a humidified atmosphere with 5% CO2. 
Every fourth day, the cells were reseeded. 

Mitochondria were prepared from the fibroblast cells as previously 
described in [6]. In short, mitochondria were obtained after a series of 
appropriately adjusted centrifugations, homogenizations, and pellet 
resuspensions at 4◦C. First, fibroblasts were placed in phosphate- 
buffered saline (PBS) and centrifuged at 400×g for 5 min. The ob-
tained cell pellet was then resuspended in a calcium-free preparation 
solution (250 mM sucrose, 5 mM HEPES and 1 mM EGTA, pH 7.2) and 
homogenized (Wheaton homogenizer, U.S.A.). The homogenate was 
centrifuged at 9200 ×g for 10 min, and the obtained pellet was once 
more suspended and centrifuged at 700—750×g for 10 min. The su-
pernatant was transferred to a new tube and centrifuged at 9200×g for 
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10 min, which allowed to get the pelleted mitochondria. The mito-
chondria pellet was resuspended in about 0.3 ml of the preparation so-
lution. The entire procedure was performed at 4◦C. 

To prepare mitoplasts, the fibroblast mitochondria were incubated in 
a hypotonic solution (5 mM HEPES and 200 μM CaCl2, pH 7.2) for ca. 1 
min for inducing swelling and breakage of the outer membrane. Finally, 
to restore the medium’s isotonicity, a hypertonic solution (750 mM KCl, 
30 mM HEPES, and 200 μM CaCl22, pH 7.2) was added. 

2.1.2. Electropysiology 
The recordings of single-channel currents were obtained through the 

patch-clamp technique in the mitoplast-attached inside-out mode. The 
pipettes used in experiments were made from borosilicate glass (Har-
vard, UK) pulled using Flaming/Brown puller. They reached a resistance 
of 10–20 MΩ. The isotonic solution filling of the patch-clamp pipette 
contained: 150 mM KCl, 200 μM CaCl2 and 10 mM HEPES at pH 7.2, 
which allowed for reaching the full Ca2+-activation of the investigated 
mitoBK channels. 

All patch-clamp experiments were carried out in a voltage-clamp 
mode at pipette potentials fixed at − 60, − 40, − 20, 20, 40, and 60 mV 
using the patch-clamp amplifier Axopatch 200B (Molecular Devices 
Corporation, U.S.A.). The obtained signal was low-pass filtered at a 
frequency of 1 kHz and sampled at 100 kHz. The measurement error of 
single-channel currents was ΔI  = 1×10− 6 pA, which was determined by 
the possible measurement resolution of the equipment. The single- 
channel recordings were recorded at room temperature. Each experi-
mental time series comprised N  = 1.98–2.00×105 current values. 

2.2. Numerical analysis 

2.2.1. Spectral entropy 
Frequency-based entropy quantifiers express the uniformity of signal 

energy distribution in the frequency domain. It takes maximum value for 
flat and minimum for single peaked power spectrum density (PSD). 
Spectral Entropy (SEN), as an analogue to Shannon information entropy 
[2], is defined as a logarithmic average of the normalized components pi 
of the i-th density components PSD(fi) [21] 

pi =
PSD(fi)

∑

i
PSD(fi)

SEN = −
∑

i
pilogpi (2) 

Higher values of SEN suggest uniformity in the distribution of the 
signal energy. The PSD is calculated using two classical methods, the 
Discrete Fourier Transform (DFT) and its averaged version, the Welch 
method [22]. 

2.2.2. Sample entropy 
Sample Entropy is a measure of uncertainty closely related to the 

Metric Entropy, a dynamical complexity measure introduced by Kol-
mogorov in the late 50’ of the last century [23,24]. For classical systems, 
it is a measure of the degree of the irregularity inherent in the system’s 
dynamics. This technique to determine changing system complexity 
from data was first introduced by Pincus as Approximate Entropy (ApEn) 
[25]. It was later updated to SampEn [26] where self matches are not 
taken into account as in the original ApEn. 

We consider time series X = {xi}
N
i=1 which consists of N data points. 

A set of vectors Um(i) = {xi,…, xi+m− 1}
N− m+1
i=1 represent m consecutive 

values of series starting with the i-th data point. The length m of the 
vectors is often called the embedding dimension. The difference be-
tween two sets Um(i) and Um(j) is taken as the Chebyshev distance 
defined as the maximum absolute difference between their scalar 
components 

d[Um(i),Um(j)] = max
k=0,…,m− 1

(|x(i+ k) − x(j+ k)|) (3) 

To measure this distance, one needs to heuristically determine the 

tolerance threshold r referred to as a similarity criterion or the distance 
threshold for two template vectors. It is usually taken within the range 
between 10% and 20% of the standard deviation σ of X [27]. If the 
absolute difference of any pair of the components is larger than r, i.e. 
d[Um(i),Um(j)] > r, the vectors are not similar. With this definition we 
can calculate the probability Cm

i (r) that any Um(i) vector is close to any 
other vector Um(j). The nm

i (r) is a number of Um(j) vectors (1⩽j⩽N − m,

j ∕= i) that are close enough to the pattern vector Um(i)

Cm
i (r) =

nm
i (r)

N − m
(4) 

The probability Cm(r) that any two vectors are within r of each other 
is taken as an average over the possible pattern vectors Um(i)

Cm(r) =
1

N − m + 1
∑N− m+1

i=1
Cm

i (r) (5) 

The negative logarithm of the conditional probability that two se-
quences which are similar for m points remain comparable to the m+1 
points, defines the Sample Entropy 

SampEn(m, r,N) = − ln
[

Cm+1(r)
Cm(r)

]

(6) 

For the above calculations j ∕= i. In the following the values of m = 1 
and r = 0.2σ have been used. 

2.2.3. Multiscale entropy 
Multiscale Entropy (MSE) is an extension of SampEn estimated for 

different time scales. We address different time scales by implementing 
the coarse-graining procedure of resampling the series [21]. Typically a 
copy y of coarse-grained time series is taken by averaging the data points 
in each of the non–overlapping windows j with the length corresponding 
to the desired scale τ 

yτ
j =

1
τ

∑jτ

i=(j− 1)τ+1

xi, 1⩽j⩽
N
τ (7) 

For each yτ
j series the value of SampEn (6) is calculated. The plot of 

SampEn versus τ provides the requested MSE curve. 
Whenever we talk about entropy in an article, we take the original 

formulation of Shannon [2] into account, where the logarithm base 
equals two, so the unit of entropy is called Shannon (Sh) or bit. 

2.3. K-nearest neighbors 

Despite its simplicity, the KNN algorithm is an effective tool widely 
used in the class of problems with labeled data classification, including 
electrophysiological time series data [28,29]. Each data point, repre-
sented by n-features, is placed in n-dimensional space. The number of 
k–neighbors for the new point is selected before assigning this data to an 
existing class. Next, the distance between a new data point and all other 
training data points is calculated. As a distance metric, the Euclidean 
formula is most often used 8. In the final part, the class of new points is 
selected based on the majority vote (the class with the largest amount of 
nearest points to the new data is selected). 

d(xi, xj) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(
xi − xj

)2

√
√
√
√ , (8)  

2.3.1. Support vector machine and stochastic gradient descent 
Support Vector Machine (SVM) is a supervised learning model. This 

classifier aims to determine the hyperplanes separating cases belonging 
to different classes with a maximum margin. In our implementation, the 
Stochastic Gradient Descent (SGD) minimizes a loss function in the 
Linear Support Vector Machine technique. The SGD is a similar tech-
nique to standard Gradient Descent, which is used, e.g., in a logistic 
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regression model. It is faster because it estimates only the derivative of a 
single random instance, not all the points. SGD is a popular algorithm for 
optimizing a wide range of models, including (linear) support vector 
machines, logistic regression, or graphical models. 

3. Results 

3.1. Sampling frequency selection 

Preliminary stage of this analysis include the selection of the sam-
pling rate, which closely corresponds to the time-scale of the system’s 
dynamics. The measuring equipment allowed us to gain a probing fre-
quency of 100 kHz to record the mitoBK channel’s activity. Here we 
postulate, that the high sampling rate would have a relatively significant 
influence on the information entropy measures. This, in turn, instead of 
meaningful results, we would effectively observe the impact of the 
oversampling. In the following we standardized the length of the data to 
198000 points (almost 2 s long recordings) for all samples. 

In the mid-sixties of the last century, Derksen and Verveen presented 
the power spectral density (PSD) of myelinated axons as being inversely 
proportional to the frequency f [30]. The flicker or pink noise reflects the 
ion channels dynamics’ complexity, given by random switches between 
the channel’s open and close states. What is defined as a channel noise 
has its origin in several distinct properties of the complex membrane 
structure [31] and the complex equilibrium protein dynamics that in-
fluence channel conductance. Therefore, such noise is not simply a 
manifestation of nonequilibrium transport phenomena but rather echoes 
several agents’ interplay influencing the channel dynamics [32]. In 
addition to real ion channels, similar characteristics were also found in 
nanofabricated synthetic pores [33]. 

Although we are able to study the complex dynamics of the processes 
taking place in membranes almost independently for each of the com-
ponents, it is still unclear what specific mechanism leads to pink noise, 
which is an averaged effect of ion channel dynamics. Any process with 
doubly harmonic diminution produces pink noise over a frequency 
bandwidth proportional to the number N of evenly spaced on real line 
eigenvalues of the diagonalizable time-evolution generator [34]. In such 
systems PSD exhibits three distinct segments: constant flat for low fre-
quencies (f < 3a/2π2), decreasing as 1/f for moderate frequencies 
(3a/2π2 < f≲aN/4π2) and as 1/f2 for fast dynamics (f≳N/4π2) for some 
nonnegative constant a. 

The presence of such complex scaling of PSD can indicate an actual 
complex f − α, α = 1, 2 characteristics known for ion channels. We will 
test the PSD against the probing frequency and search for the best rep-
resentation of the intricate channel noise dynamics for further entropy 
investigations. In Fig. 1 we present the PSD calculated for several 

sampling frequencies. The minimal rational sampling rate is 2 kHz due 
to the restrictions imposed by the low-pass filtering, as the sampling rate 
is supposed to be greater or equal to doubled threshold frequency in low- 
pass filtering. In such a situation, 100 kHz (blue dotted line), 20 kHz 
(orange dashed line), 10 kHz (green dashed-dotted line), 4 kHz (red 
dense dashed-dotted line) and finally, the limiting sampling rate 2 kHz 
(purple dashed-double-dotted line) are displayed. On top of that, the 
characteristic of the artificial 1/f noise is shown with a gray solid line for 
comparison. 

The PSD of the original sampling rate (blue dotted line) does not 
show any of the features essential for the pink noise. Reducing the 
sampling to 20 kHz, either by keeping every 5th data point or by aver-
aging windows of consecutive 5 points, brings the periodogram closer to 
the desired shape, as the distinct window of PSD∝f − 1 decrease becomes 
apparent (see the middle part of the orange dashed line). Further 
reduction of the sampling rate reveals the demanded peculiarities. For 
the sampling rate of 10 kHz (green dashed-dotted line), we can identify 
all three regions: flat, f − 1 and f − 2. This condition stays present for even 
lower rates, however, with the cost of reduction of f − 2 part. The latter 
region disappears as we decrease the sampling even more and become 
absent for the limiting sampling rate of 2 kHz (purple dashed-double- 
dotted line). Interestingly in such a case, the PSD shows considerable 
similarities to the artificial 1/f signal (solid gray line). 

The closer inspection of the PSD obtained for the 10 kHz allow for the 
exact calculation of the specific value of a ≃ 5140 and the corresponding 
number of eigenvalues N = 42. All three regimes with in-between 
borders marked by the red arrowheads are visible in Fig. 2. 

The phase diagram presented in the two lower panels of Fig. 3 
summarizes the sampling influence on the information contained in the 
PSD. It is divided into four regions depending on the rate of spectral 
density decay. The light green color shows the frequency range for 
which the PSD is approximately constant (f0). Green and dark-green 
sections correspond to the 1/f and 1/f2 characteristics, respectively. 
The area marked in red corresponds to PSD decay faster than 1/f2. One 
can see from the diagram that there are more sampling frequencies 
which show all three consecutive scaling functions describing sections of 
PSD fn,n = 0, − 1, − 2, which one need to relate the channel dynamics to 
the doubly harmonic diminution process [34], although the highest 
chance of finding such properties lies around 10 kHz. This finding holds 
for other values of the membrane potential, independent of hyper- and 
depolarization states. Unfortunately, for the original recording fre-
quency of 100 kHz, we did not observe the necessary relation for the 1/f 
decay. c.f. the solid blue line in upper panels of Fig. 3. 

Fig. 1. Power spectral density as a function of the frequency calculated for 
artificial pink noise (solid gray line) as well as for the actual channel mea-
surement for several sampling rates: 100 kHz (blue dotted line), 20 kHz (orange 
dashed line), 10 kHz (green dashed-dotted line), 4 kHz (red dense dashed- 
dotted line) and 2 kHz (purple dashed-double-dotted line). Two solid lines 
mark the f − α,α = 1, 2 and serve as a guide. PSD was calculated with the 
Welch method. 

Fig. 2. Power spectral density as a function of the frequency calculated for the 
sampling rate of 10 kHz. PSD calculated using the Welch method (solid green 
line) is shadowed by the results of the discrete Fourier transform (DFT, light 
green in the background) manifest all three distinct scaling regimes: constant 
flat if f≲780Hz (red down arrowhead), 1/f for 780Hz≲f≲5.5kHz (red up 
arrowhead) and 1/f2 for the fastest dynamics. It is because of the logarithmic 
scale that data points get denser toward the right end of the graph. 
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3.2. Spectral entropy 

In Fig. 4 the SEN (2) averaged over all recordings for hyperpolar-
ization (a), and depolarization (b) is presented for the sampling fre-
quencies in question. We want to point out no frequency-domain 
information loss (or gain) if one decides to drop the sapling from 100 
kHz to 10 kHz. In other words - all the correlations hidden behind 
densely sampled data will still be present in a ten times smaller sample. 
The determination of PSD is insensitive to the nonlinearities that might 
be present in the signal. Next, we address the sample entropy to get rid of 
this gap. 

3.3. Sample entropy 

Despite the drastic difference between PSD calculated for data with 
100 kHz and ten times lower sampling frequency, it turns out there is no 
actual visual discrepancy in the time dependence of ionic current, c.f. 
corresponding black solid (100 kHz) and green dashed lines (10 kHz) in 
Fig. 5 for comparison. There is, however, a visible difference in vari-
ability of the latter data sets and the same signal but sampled with 4 kHz 
(solid red line). 

In the context of signal analysis, information entropy measures the 

meaningful structural richness of the data points sequences. The smaller 
the variation in the series, the lower the value of information entropy. 
This has consequences in decreasing entropy values along with 
increasing sampling rate of mitoBK channel’s data as is presented in 
Fig. 6, where the MSE curves are shown for different sampling rates, 
similarly to the section above. We can observe that the lowest sample 

Fig. 3. Phase diagram of the influence of sampling frequency on the PSD characteristics for the signal recorded at the representative magnitude of hyperpolarization 
(left, − 20mV) and depolarization (right, 20mV). Four colors in two lower panels (light-green, green, dark-green, and red) correspond to four decay rates (flat 
constant, f − 1, f − 2 and faster than the latter), respectively. The upper panels present the exponent variation for three selected values of the sampling frequencies (solid 
blue for 100 kHz, dashed orange for 10 kHz and dotted green for 4 kHz). 

Fig. 4. The values of SEN calculated over range of sampling frequencies for the time series registered at different potential U⊂[ − 60,60] mV with the step of 20 mV 
for hyperpolarization (a) and depolarization (b). 

Fig. 5. Similar plots of ionic current with sampling rates of 100 kHz (black 
solid), 10 kHz (lawn-green dashed) and 4 kHz (red solid) shown against the 
same signal source but with 4 kHz rate (solid red) for single recording at 
depolarized membrane potential of 20mV. 
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entropy values occur for the highest sampling rate across the whole 
scaling range. Besides, the shape of the MSE curve in this case mostly 
differ from the others. The dependency looks nearly linear, c.f. the blue 
dotted line in Fig. 6. 

In contrast, when the sampling rate is too rough, the observed 
changes of entropy may not correspond to the system’s real complexity, 
as seen on PSD above. This effect may stem from omitting the crucial 
events in system dynamics. In such a case, one cannot observe the whole 
path of entering a given state and exiting it during the conformational 
switching. Thus, one can introduce an artificial gain in complexity 
(higher entropy values than expected) due to ignoring intermediate 
stages linking the remote conformational states. The second conse-
quence undersampling causes is the apparent timescale of conforma-
tional diffusion of channel protein being slower than the actual one. So 
the discrepancies between the rapid components (movement of channel 
pore-forming helices) and the slow components (interprotein in-
teractions, membrane fluctuations) of the observed single-channel cur-
rent are lower than in reality. This, in turn, may lead to the almost linear 
dependency of entropy on a scale, as in the case of the lower valued 
sampling cases of 4 kHz (red dense dashed-dotted line) and 2 kHz 
(purple dashed-double-dotted line) in Fig. 6. 

3.4. 10 kHz as an optimal sampling frequency 

The above arguments indicate 10 kHz sampling frequency as 
possibly the most adequate representation of the peculiarities of the 
dynamics of ion current changes within the mitoBK channels activity. It 
is also believed that experimental resolution of 10 kHz can mostly 
correspond to the actual time scale of the mitoBK channel’s dynamics. 
Fortunately, for the chosen sampling frequency, one can mark the most 
significant changes in entropy for small scales, giving valuable infor-
mation about the nature of the tested signal’s complexity. Increasing the 
scale from 1 to 4 unravels the signal’s new structures, which probably 
are affected mainly by the relatively rapid components of the analyzed 
process, i.e., channel helices’ movement. The weakly increasing trend 
observable for larger scales stems mainly from the relatively slow 
components of the systems’ dynamics like the membrane fluctuations. 
The choice of 10 kHz let us keep more details about the signal. It allows 
us to monitor the global system dynamics in real-time without over-
sampling on the one hand and losing too much information about the 
mitoBK conformational diffusion observed in the form of ion current 
fluctuations on the other. 

4. Multiscale sample entropy 

The central result of this work is presented in Fig. 7, where the 
average SampEn values are calculated from 11 independent time series 
of single-channel currents at fixed membrane potential and displayed 
separately at membrane hyperpolarization (a) and depolarization (b). 

The MSE curves are assigned to the three different potential values: U =

[20mV,40mV,60mV] for the depolarization of the mitochondrial mem-
brane, and U = [ − 20mV, − 40mV, − 60mV] in the case of hyperpolar-
ization. For the later (see Fig. 7a), the state recorded at − 20mV potential 
stands out the most, with the highest values of SampEn across all time 
scales. In turn, at membrane depolarization, the 60mV potential has the 
significantly lowest entropy values over the whole range of scales. The 
system’s complexity is highest in terms of intermediate values of open 
state probability at each observation scale. In those terms, the energetic 
barriers separating the functionally open and closed conformations are 
relatively low, so the channel can quite freely fluctuate between the 
manifolds of open and closed substates. Therefore, at the intermediate 
potential (-20 mV), the complexity of channel switching is relatively 
high. 

The shape of curves indicates an increase in entropy along with 
scales. The most rapid boost is visible for the small scales. The average 
values of SampEn are also found to be greater at membrane depolari-
zation. This suggests that the conformational space within the open and 
closed states may not be symmetric, as well as the changes in proba-
bilities of switching between the recognized substates are not analogical 
when one deeply lowers or increases membrane potential. In general, 
the conformational dynamics seems to be more complex when the 
channel is activated by voltage. In other words, the complexity of 
switching between different channel substates increases when the 
membrane potential is high, which leads to a decrease of the system 
predictability and, in turn, an increase of the sample entropy. 

4.0.1. Results of statistical analysis of MSE 

The normality test of the entropy values was calculated via Shapir-
o–Wilk formula. The values of entropy are investigated at each scale. In 
depolarization, except for the scales 9 and 10, all entropy values are 
characterized by a normal distribution (p > 0.05 calculated via Shapir-
o–Wilk formula at selected significance level α = 0.05). For depolari-
zation state, the t-test and the non-parametric ANOVA Kruskal–Wallis 
statistic calculated for the scales 9 and 10 showed no statistically sig-
nificant differences between the entropy values (p > 0.05) assigned to 
the potential values (20, 40, and 60 mV) (see Fig. 7b). The other situ-
ation occurs for hyperpolarization, where the statistics rejected the hy-
pothesis about the normal distribution of entropy values for most cases. 
The Kruskal–Wallis test showed statistically significant differences be-
tween entropy values for all scales (p < 0.05) (see Fig. 7a). In addition, a 
comparison of depolarization, and hyperpolarization states was per-
formed. As the non-parametric analog of the t-test for comparison be-
tween two independent groups, the Mann–Whitney U test was used. The 
hyper-, and depolarization at each stage of potential, yielded the 

Fig. 6. Sample Entropy as a function of the scale calculated for the different 
sampling rates: 100 kHz (blue dotted line), 20 kHz (orange dashed line), 10 kHz 
(green dashed-dotted line), 4 kHz (red dense dashed-dotted line) and 2 kHz 
(purple dashed-double-dotted line). 

Fig. 7. The mean values of SampEn entropy calculated over a range of scales s⊂ 
[1, 20] for the time series registered at different potentials U⊂[ − 60,60] mV with 
the step of 20 mV for hyperpolarization (a) and depolarization (b) sampled at 
10 kHz. The average values of SampEn at each individual scale are presented 
with standard deviations. 
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following results:  

• |U20mV |: normal distribution of SampEn values detected for all scales 
via Shapiro–Wilk test (p > 0.05). The t-test confirmed the statisti-
cally significant difference between the stage of hyper- and depo-
larization only for the small range of scales 1–6 (p < 0.05).  

• |U40mV |: the hypothesis about the normal distribution of SampEn 
rejected for all scales. The Mann–Whitney U statistics confirmed 
statistically significant differences between hyper- and depolariza-
tion (p < 0.05 for all the scales).  

• |U60mV |: the hypothesis about the normal distribution of SampEn 
rejected for all the scales. Mann–Whitney U statistics confirmed 
statistically significant differences between hyper- and depolariza-
tion (p < 0.05 for all the scales). 

5. Separation of data at different membrane potentials 

To study the differences between the MSE entropy curves in a more 
detailed way, we considered all the scales. Next, we implemented the 
machine learning techniques to find the numerical point separability 
index between the classes representing the experimental data obtained 
at different membrane potentials. We implemented the Support Vector 
Machine method and K-Nearest Neighbors technique for evaluating the 
classification accuracy between the different potential due to Multiscale 
Entropy values. The prediction of accuracy is described by Eq. 9. True 
Positives (TP) represent the samples that were classified correctly as 
right. True Negatives (TN) are classified correctly as wrong. Likewise, 

we have the False Negative (FN), and False Positive (FP). 

Acc =
TP+ TN

TP+ TN+ FN+ FP
⋅100%. (9) 

For the visualization of the separability of points, we used the deci-
sion surface of multi-class plots. Fig. 8 characterizes the separation of 
data at different membrane polarization states according to MSE entropy 
values. The individual points characterizes the MSE values, respectively 
for MSEtau⊂[10,20] for ordinate axis, and MSEtau⊂[0,10] for the abscissa. What 
is necessary to emphasize, the points in Fig. 8 are shifted and do not 
characterize the precise entropy values due to the earlier data stan-
dardization, which is required for the machine learning algorithm. The 
subtraction of the mean and division by the standard deviation artifi-
cially shifted the points towards the negative values. The better sepa-
rability is visible for the data registered at membrane hyperpolarization 
in comparison with the ones obtained at membrane depolarization (see 
the statistical analysis, Section 4.0.1). The different color points repre-
sent each class of potential at hyper-, and depolarization state sepa-
rately: − 20 mV, − 40 mV, − 60 mV for hyperpolarization (see Fig. 8 and 
20 mV, 40 mV, 60 mV for depolarization (see Fig. 8b). The background 
colors show the decision surfaces. For each of the N classes, a binary 
classifier between one class and the others is constructed. We can 
observe better separability and a greater value of classifier accuracy for 
the channel currents recorded at different states of membrane hyper-
polarization (SVMscore = 0.753) than for the cases at membrane depo-
larization (SVMscore = 0.404), which can also be visible directly from 
MSE curves dependency (see Fig. 7). At each stage of membrane depo-
larization, we observe a high voltage activation of the channel. 

Fig. 8. The Decision Surfaces of Support Vector Ma-
chine assisted by Support Vector Machine algorithm 
optimized by the Stochastic Gradient Descent Classifier: 
panel a characterizes the points assigned to the mem-
brane hyperpolarization; subfigure b presents the po-
tential values recognized as membrane depolarization. 
The points represent the class of − 60 mV(brown cir-
cles), − 40 mV(red triangles) and − 20 mV(blue squares) 
for depolarization; 60 mV(brown circles), 40 mV(red 
triangles) and 20 mV(blue squares) for hyperpolar-
ization. Each point in the plane is characterized by 2 
entropy values: the ordinate axis describe the MSEτ for 
τ⊂[0, 10]; the abscissa axis represents MSEτ for τ⊂[10,
20]. The process of standardization shifts the data 
points toward negative values.   
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Especially in the case of 40 mV and 60 mV, the open state probability 
approach its maximal value. In those terms, the channel’s voltage sensor 
is located possibly close to the outer side mitochondrial membrane, and 
there is a minor variation within the available conformational states of 
the channel. In consequence, at the high voltage, the single-channel 
current traces have similar characteristics. Table 1 summarizes these 
results, supplementing them with the results of the KNN classifier. Both 
methods (KNN and SVM) give consistent results after implementation of 
k-fold cross-validation method which is a procedure that let us obtain 
the average results of different configuration of test and training data. 
Table 2. 

Fig. 9 compares the hyper- and depolarization states at different 
values of membrane potential. We can observe an excellent separation 
between the states for |U40mV | and |U60mV | with the accuracy of classi-
fication 0.988 and 0.967. The most difficult is to distinguish between 
states at |U20mV | (the rate of about 0.58). The results calculated by both 
classifiers are presented in Table 1. 

6. Discussion 

PSD and MSE analyses both confirmed the complex, pink noise 
characteristics of the system’s dynamics. The apparent nonlinear fea-
tures of the ion channel system strongly depend on the sampling rate at 
patch-clamp recording. Thus, a crucial preliminary task before starting 
the numerical analysis of the electrophysiological experiment is to 
appropriately choose the sampling rate to capture the system’s dynamics 
in real-time. On the one hand, it is important not to reduce the infor-
mation about the conformational dynamics of the channel protein by 
imposing too low a probing frequency. On the other hand, the over-
sampling causes that each data point to carry less useful information 
than it could bring when the sampling rate would approach the suitable 
timescale of the system’s dynamics. 

Our results showed that such a compromise is obtained for the 
sampling of 10 kHz. In terms of probing frequency of 10 kHz (or higher), 
the three distinct segments describing pink noise dynamics typical for 
ion channels [32] become visible within the PSD plot. The MSE plots 
suggest a significant loss in information for signal probing of over 10 
kHz (oversampling). 

This result can be counterintuitive since the limited temporal reso-
lution of measurement may imply failure to detect brief channel open-
ings and shuttings [35]. According to the studies presented in [36] 
increasing sampling resolution from 22 to ca. 8 μs doubled the number 
of detected rapid shuttings (shorter than 100 μs). Nevertheless, the re-
sults [36] refer to an acetylcholine receptor that is structurally and 
functionally not as complex as the mitoBK channel. The possible mutual 
interactions between the ligand-sensing domain, voltage-sensing 
domain, and the channel gate in the mitoBK channel (that can be 
analogous to the BK channel [37]) may result in shifting the time scale of 
gating towards larger values. 

The signal in the form of single-channel currents is a composition of 
several large- and small-scale components influencing pore-gate dy-
namics, including not only a sole channel protein fluctuations stemming 
from the equilibrium protein dynamics itself, but the proteins confor-
mational diffusion is deeply affected by other processes within the 
membrane patch [31,32]. The analysis of the patch-clamp recordings 
employing PSD and MSE allowed us to highlight the rapid and slow 
components of the analyzed processes (as different regimens within the 
PSD and MSE plots, independently). It turns out that in small scales 1–4, 

one can observe a significant gain of entropy (and complexity of system 
dynamics), which is probably most affected by the rapid components as 
a movement of the channel helices. This gain may be explained by the 
fact that the random fluctuations don’t exhibit too high complexity [38]. 
Thus, at the smallest timescale, when the signal can be mostly biased by 
thermal fluctuations of pore-forming helices of the channel, the 
observed entropy is not as high as in the larger time scales for which the 
complex channel dynamics seems to be relatively more complex. In turn, 
the low, almost linear increase in entropy at larger scales suggests that 
some new structures are still unraveled when one increases the time 
scale of process observation, which resembles the presence and impact 
of large-scale processes, like the ones which refer to the state of the 
membrane. 

Referring to the characteristics of conformational dynamics of 
mitoBK channels in fibroblasts during voltage activation, one can 
observe that the most complex structure of the signal corresponds to the 
intermediate voltage values. In those terms, the channel may quite freely 
change the conformations in a relatively intricate way, which may be 
caused by relatively small energetic barriers separating the substates 
within the open and closed manifolds of channel states. In contrast, 
when the voltage sensor is at deep depolarization or hyperpolarization, 
the channel tends to switch in a more systematic way. The energetic 
landscape of the system predefines a set of highly preferred channel 
conformations and the most probable method of switching between 
them. Thus the complexity of single-channel currents is lower in those 
terms. Interestingly, the system of available channel conformations is 
more complicated in its voltage-activated state compared to the non- 
activated one at membrane hyperpolarization. 

In this work, we showed the utility of PSD, SEN, and MSE in pre-
liminary studies of conformational dynamics of ion channels. This is 
particularly important in channels where the molecular structure is not 
yet available, as in mitoBK channels in complex with β3 subunits in 
fibroblast cells. The presented methodology can be considered a 
powerful tool for analyzing single-channel recordings, which gives a 
piece of complementary information to the standard kinetic analysis. 
The kinetic analysis enables the average description of the system dy-
namics, e.g., calculation of open state probability, mean dwell-times of 
the recognized states, and the switching rates. The nonlinear methods 
calculated across many timescales allow for a global look at the system 
and extract the information about the component processes that effec-
tively affect the observed dynamics at different scales. What is also 
worth emphasizing, a good separation of analyzed states received via the 
Multiscale Entropy indicates a tremendous future potential for imple-
menting information entropy techniques and studying the ion channels 
activity, especially when combined with machine learning 
methodology. 
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Table 1 
Accuracy score calculated by the KNN and SVM compared for MSE at different 
membrane potential states.  

Membrane potential AccKNN AccSVM   

Depolarization (20 mV, 40 mV, 60 mV) 0.420 0.404   
Hyperpolarization (− 20 mV, − 40 mV, − 60 mV) 0.758 0.753    

Table 2 
Classifier score calculated by the KNN and SVM compared for MSE at different 
membrane potential states.  

Depolarization vs Hyperpolarization AccKNN AccSVM   

20/− 20 0.602 0.580   
40/− 40 0.988 0.988   
60/− 60 0.960 0.967    
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