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A B S T R A C T

The electrical activity of external anal sphincter can be registered with surface electromyography. This signals
are known to be highly complex and nonlinear. This work aims in characterisation of the information carried in
the signals by harvesting the concept of information entropy. We will focus of two classical measures of the
complexity. Firstly the Shannon entropy is addressed. It is related to the probability spectrum of the possible
states. Secondly the Spectral entropy is described, as a simple frequency-domain analog of the time-domain
Shannon characteristics. We discuss the power spectra for separate time scales and present the characteristics
which can represent the dynamics of electrical activity of this specific muscle group. We find that the rest and
maximum contraction states represent rather different spectral characteristic of entropy, with close-to-normal
contraction and negatively skewed rest state.

1. Introduction

The colorectal cancer (CRC) remains one of the most common
cancer with a high mortality rate (Ferlay et al., 2012; Arnold et al.,
2016). The appropriate diagnostic procedures are required for both
prior to treatment and during the multimodal therapy. In order to im-
plement the most effective healing process while increasing the prob-
ability of fast recovery, not only the tumor diagnostic techniques are
important but also the monitoring of surrounding anatomical structures
that may be potentially affected by the invasive therapy including
surgery or radiation (Ammann et al., 2003; Ridolfi et al., 2016). On top
of that the understanding of the evolution and mutation of the CRC cells
are crucial for more effective future treatment (Roerink et al., 2018). In
this work we study the results of some less conventional method of
diagnosis of an external anal sphincter (EAS) activity before and after
the surgery. The classification of patients can be effectively based on
the anorectal manometry together with the descriptive parameters like
root mean square or median frequency of raw sEMG signals
(Nowakowski et al., 2017). The electrical activity of this muscle group
is investigated through the surface electromyography technique (sEMG)
before and after the anterior resection (AR) or the lower anterior re-
section (LAR). The registered time series indicate a high degree of
complexity, hence it is necessary to apply methods that adequately

characterise the dynamics of the complex process hidden in the high-
dimensional data sets. The sEMG signals in question exhibit two distinct
scaling regions which can be identified with multifractal spectra. The
multi- and mono-fractal nature of the signals can be seen for the short
and large time scales respectively with the former being the result of the
long-range correlations for weak and large fluctuations (Trybek et al.,
2018a). Quite recently, considerable attention has been paid to the
entropy-based techniques with a very promising potential in bio-med-
ical signal processing (Nikulin and Brismar, 2004; Costa et al., 2005;
Kaplanis et al., 2010; Borowska, 2015). The idea of implementing the
entropy notions for the measure of biodiversity is present in an in-
creasing number of the studied biosystems, from the microscopic level
(Stewart et al., 1997; Zhang and Xiao, 2009) to the whole body re-
sponse that can be investigated by the spectrum of electrophysiological
signals as electrocardiography (ECG) (Cysarz et al., 2000; Kamath,
2012; Makowiec et al., 2015), encephalography (EEG) (Phung et al.,
2014) or magnetoencephalography (MEG) (Gómez and Hornero, 2010).
The specific values of the approximate entropy measures and their
dependence on the time scales were analysed for the sEMG signals re-
gistered with patients with colorectal cancer (Trybek et al., 2018b). The
statistically significant differences among all stages of medical treat-
ment and for all consecutive depths of rectum area were found for the
Sample Entropy (SampEn) (Richman and Moorman, 2000). The analysis
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of SampEn over multiple time scales exhibits the most visible differ-
ences between AR and LAR groups were identified one month after an
operation. It was also shown that the information carried out by the
sEMG signals measured one year after the surgery returns to the state of
that before the surgery for the selected cases (Trybek et al., 2018b).

This work presents the application of basics ideas taken from the
information theory for the characterisation of a specific neuromuscular
activity of EAS. To better understand of features of analysed signals and
how complexity is assessed from them the standard Shannon entropy
(Hx) with their frequency analogue – spectral entropy (Hf) were applied.
A thorough spectral analysis was also carried out for the full char-
acterisation of the examined time series.

2. Material and methods

Patients. The study group include 20 subjects. Among them were 6
female and 14 male with the average age 64.6. All patients were di-
agnosed with a rectal cancer and undergone one of a surgical procedure
(LAR or AR).

Data acquisition. The series (Fig. 1) were recorded before surgery,
and two times after, respectively 6 months and 1 year in the post-
operative period. In addition the two extreme cases of muscle tension,
relaxation and maximum voluntary contraction (MVC) were considered
separately. The measuring device developed at the Politechnico di
Torino in collaboration with the OT-Bioelettronica consist of 3 rings of
16 silver/silver oxide bar electrodes. The proper measurement took 10 s
each. The sampling frequency was set to 2048 Hz. Low and high pass
filters were used at 10 and 500 Hz respectively and resulted in typical
3 dB bandwidth for the Analog to Digital Converter. The 20 sub-
jects× 16 channels× 3 different depth of rectum×2 stages of muscle
tension (REST vs MVC)×3 different stages of treatment resulted in
about 6000 signals for analysis.

3. Information entropy

In statistical thermodynamics the macroscopic state of the micro-
system is characterised by the distribution of the possible states. The
entropy of distribution pi of a discrete set =X{ }i i

n
1 of nmicrostates is given

by the Gibbs formula S=− kBT∑ip(Xi) log p(Xi), where T is a tem-
perature and kB is the Boltzmann constant. This definition works also
for systems far away from equilibrium. An early idea of Gibbs was
transmitted to the information theory in 1948 by Claude Shannon
(Shannon, 1948) and since then serves as a popular definition of the
complexity of signals (MacKay, 2003).

3.1. Shannon entropy

The average Shannon information content Hx of an outcome x
characterises the average information contained in the signal. It cal-
culates the number of possible states that the system represented by a

respective time series can take. Hx is often associated with the degree of
uncertainty present in the signal or with the information that is in-
versely proportional to its predictability. The basic formula for calcu-
lating Hx of time series of N samples =x{ }i i

N
1 with the probability dis-

tribution function p(xi) is given as a average number of the logarithm of
the probability of a certain state xi.

∑= −
=

H p x p x( )log ( )x
i

N

i i
1 (1)

The higher values of Hx are determined by more unpredictable char-
acter of the series. The maximum of Hx occurs in the case when all the
states are equally probable. The base for logarithm in (1) defines the
unit of entropy. Throughout this paper we will use the original for-
mulation of Shannon (Shannon, 1948), where base equals 2 and the
unit of entropy is called Shannon Sh or bit.

3.2. Power spectral entropy

The Power Spectral Entropy (Hf) is a simple analog of the Hx in the
frequency-domain. It tells us how broadly the power in the signal is
distributed across the available frequencies. It is used as a measure of
the width and uniformity of the power spectrum. The frequency com-
ponents of the power spectrum are always found to be linearly in-
dependent, regardless of the presence or absence of correlations. It
gives an advantage over the standard method of creating a histogram
where the correlations present in the signal are lost. The main limita-
tion of this method lies in the fact that the determination of the power
spectrum filters out all the nonlinearities that might be present in the
signal, thus is an insensitive method for more subtle features of the
signals (Semmlow and Griffel, 2014). The first step in the procedure of
estimation of the Hf is the calculation of the Power Spectral Density Sxx
function. Next, the Sxx is normalised by the sum of all its spectral
components si.
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Above x(fi) is the Fourier transform (FT) of the process x(t) and f is the
frequency in Hz. For the estimation of the PSD of x(t) we use the per-
iodogram (Semmlow and Griffel, 2014). As a non-parametric estimator
of the PSD is not always consistent due to the fact that its variance does
not always converge to zero with the signal length, for formal analysis
of the PSD (see Fig. 4) we use the Welch method (Welch, 1967). In
short, it splits the random signal into overlapping segments, estimates
the PSD for each one and returns the average over these local estimates.
The Power Spectral Entropy is defined as

∑= −H s slogf
i

i i
(3)

If only few frequencies are present the Hf will naturally be low valued,
so deterministic systems with a single frequency, such as a sine wave,
have an entropy value of 0. For the case of wide distribution of fre-
quencies, like for the white or pink noises, the value of Hf will be much
higher. For instance white Gaussian noise have the maximal Hf on a
given scale.

4. Results

Shannon entropy. We start with the estimation of the probability
distribution p(x) of the amplitudes of the signal. The simplest way to do
so is to use the values of the signal itself and calculate their frequency. It
is done by creating histograms of the amplitudes and normalise them by
total number of samples N. Exemplary plots of the histograms can be
seen in Fig. 2 for all 16 channels at 5 cm depth. At first glance all the
characteristics look normal, although about 85% of the analysed signals
fail Lilliefors test (Lilliefors, 1967) and more than 90% of signals fail

Fig. 1. The raw signals registered at 16 electrodes at anal channel depth of 5 cm
was truncated to 100ms for visibility.
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Anderson-Darling normality test (Anderson and Darling, 1952) at the
significance level α=0.05.

Next, for the estimated probabilities we calculate the Shannon en-
tropy. In Fig. 3 we depict the distribution of the obtained values. They
range from 0.9492 Sh to 0.9639 Sh. The most common value is
0.9625 Sh, while the average and median read 0.9602 Sh and
0.9609 Sh, respectively. All values are accurate to four significant di-
gits. This characteristics stay similar for the pre/post stages of surgical
treatment, c.f. light blue lines in Fig. 3.

Spectral entropy. Similarly we start with the calculation of power
spectra. For sEMG signals we found them rather complex where certain
timescales can be described with different distribution functions, see
Fig. 4 for details. Slow dynamics (f < 27, dashed grey) can be re-
presented by the stretched exponential distribution of the Weibull form
∝ −x λ x λ( / )exp[ ( / ) ]β

1 1 1 , with the average values of
λ1= 0.0316 ± 0.0095 and β1= 1.5708 ± 0.4988. On the other hand
relatively slow dynamics (50 < f < 200, dashed orange) can also be
represented by the simple exponential distribution ∝ exp(− x/λ2) with
the average λ2= 0.0325 ± 0.0105. Sxx for the fast and intermediate
frequencies (f > 28, dashed green) is given by the stretched ex-
ponential distribution ∝ −x λexp( / )β

3 3 with the average values of
λ3= 0.1109 ± 0.0124 and β3= 2.6261 ± 0.2037.

In comparison with the probability based Hx, the typical values of Hf

are drastically lower, see Fig. 5. The average value of the spectral en-
tropy for the total number of signals equals 〈Hf〉=0.0179 ± 0.0017.
The distribution of the spectral entropy over the whole samples in
question is bi-modal, cf. grey histogram in Fig. 5. This can be explained
once we consider separately the rest (blue) and MVC (orange) states.
For the rest state the shape of the distribution of spectral entropy re-
minds the distribution of the Shannon entropy, with specific most
common (maximum) state and the negative skewness, see Table 1. The

distribution of the Hf for MVC is much closer to normal with the kur-
tosis 3.2969 and skewness 0.2556. In contrast to the Hx its frequency
domain equivalent also indicates a significant decrease of the average
value Hf for MVC. Both distributions are rather leptokurtic as both
produce rather above average number of outliers than the standard
normal distribution.

This situation is partially justified by the concept of entropy as a

Fig. 2. The probability distributions of amplitudes for 16 electrodes, shifted
along abscissa for visibility. State x represent the voltage registered with sEMG.

Fig. 3. The distribution of Shannon entropy p(Hx) calculated for all signals.
Light solid lines represent histograms obtained separately for pre/post surgery
recordings. Red dots mark the respective position of (left-to-right) mean,
median and most probable value (max) of Hx. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 4. Exemplary power spectrum calculated for the raw sEMG data. Black dots
denote periodogram. Red dots mark power spectrum calculated with the
Welch's method. Sxx for the slow dynamics can be approximated by the stret-
ched exponential distribution of the Weibull form (dashed grey) or simple ex-
ponential (dashed orange) distribution. Intermediate and fast dynamics is re-
presented by the stretched exponential distribution (dashed green), see text for
details. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. The distributions of the spectral entropy p(Hf) over the whole examined
samples (grey) and separately for MVC (orange) and rest states (blue). Bar plots
represent the histograms, while solid lines depict the kernel density estimation.
Note shifted distribution of the MVC and rest states. See text for physiological
explanation. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Table 1
The basic statistical description of the distributions of the spectral entropy in
sEMG signals presented in Fig. 5 separately for rest and MVC states as well as
for all the signals. All values are accurate to four significant digits. Note similar
average values for all sets. Close-to-Gaussian distribution of Hf for MVC state
can be expressed with rather low skewness and similar kurtosis.

Total Rest MVC

Mean 0.0179 0.0190 0.0167
Std 0.0017 0.0015 0.0011
Skewness −0.0894 −1.4040 0.2556
Kurtosis −0.2013 4.3347 3.2969
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measure of the diversity of the available states in the system. The re-
duction of these states is a consequence of the muscle contraction
phenomenon itself. During the propagation of the action potential
within the functional motor units the specific direction of the process is
dominated, which automatically entails the decrease of the number of
possible states that the system can choose.

5. Discussion and conclusions

The purpose of this work is to characterise the average information
content of sEMG signals registered from external anal sphincter during
multi-modal rectal cancer therapy. The data were examined in terms of
application of the basic notions of information theory with a special
effort devoted to the frequency distribution and the spectral entropy
which is built upon it. The spectral analysis itself brings a valuable
information about the character of data. The power spectrum density
for frequencies of the electrical activity of EAS is relatively wide, with
the power that decrease exponentially for slow and even faster for the
intermediate and higher frequency components. For the slow dynamics
there is clear frequency of around 50 Hz for which Sxx is maximal for all
signals.

The standard probability based Shannon entropy did not provide
any significant discrepancy for the signals measured before and after
the surgery or for the relaxation vs MVC stages. This is partially a
consequence of noisy character of sEMG data and similar probability
distributions obtained for all the compared states. The broad power
spectrum identified below the Nyquist limit should result in the rela-
tively large values of Hf, which is not confirmed by our results. The
effect of the drastically decreasing of Hf and its very small values can be
justified by the dominance of the narrow-banded slow dynamics and
fast decreasing power spectrum for fast dynamics. Despite the a little
amount of spectral information contained by the EAS activity, in con-
trast to the Shannon estimator, Hf parameter clearly distinguishes the
extreme states of muscle tension (relax vs MVC). This contrast can also
be found for multiscale SampEn (MSE). For the relaxation state of
muscle the value of MSE grows much faster to it's maximum value with
the increase of the scale factor. (Trybek et al., 2018b). The anal
sphincter muscle group resting activity contains a valuable amount of
information which in frequency domain is greater than for the case of
forced activity. This feature can be of importance for the clinicians in
case of pre-surgery survey with sEMG.

The main limitations of this study are due to the problem of inter-
subject variability. The large diversity in distribution of EAS innerva-
tion zones, mainly caused by the high level of the individual asym-
metries significantly affects the differences between the compared
groups. That effect potentially has the greatest impact on very weak
ability to distinguish the different states of treatment. Also the com-
putational technique used has its internal limitations such as in-
sensitivity to non-linear character of data. However, to our knowledge
this is the first study which implements the information theory to the
complex neuromuscular EAS activity and further investigations of the
issue is still required. In our future research we intend to particularly
concentrate on the methods that next to the statistical properties of data
also taking into consideration the signal dynamics.
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