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a b s t r a c t 

Up to 40% of patients treated for rectal cancer suffer from therapy-related symptoms. Innervation injury 

is one of the suggested pathomechanisms of those symptoms hence the development of a valid, non- 

invasive tool for the assessment of neural systems is crucial. The aim of this work is to study the fractal 

properties of the surface electromyography signals obtained from patients suffering from rectal cancer. 

The anal sphincter activity was investigated for the group of 15 patients who underwent surgical treat- 

ment. Multifractal detrended fluctuation analysis was implemented to analyze the data, obtained at four 

different stages: one before treatment and three times after the surgery. The results from the standard 

detrended fluctuation analysis and empirical mode decomposition methods are presented and compared. 

The statistically significant differences between the stages of treatment were identified for the selected 

spectral parameters: width and maximum of the spectrum. 

© 2018 IPEM. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Over last few decades, surface electromyography (sEMG), due to

ts non-invasive characteristics, has gained a wide range of applica-

ions for neuromuscular systems. This work is focused on an appli-

ation of the sEMG concerning the diagnosis of the anal sphincter

f the patients suffering from rectal cancer [1,2] . Rectal cancer re-

ains to be one of the most frequent cancers in humans [3] . It

equires complex multimodal treatment composed of surgery, irra-

iation and chemotherapy. All of those methods can cause signifi-

ant stool continence-related problems hence proper assessment of

norectal innervation before and after the treatment can be crucial

or the prevention and treatment of complications. The diagnos-

ics of innervation of the anal sphincter is undeniably a central is-

ue for the evaluation of treatment progress but there is still no

ractical diagnostic test whose usefulness is scientifically proven.

EMG enables non-invasive monitoring of the anal sphincter func-

ion [4–6] and is a very promising method of testing of innervation

f muscles. 

Regardless of the application, sEMG always represents highly

omplex signals with a low signal to noise ratio [7] . The nonlin-

arity of sEMG data has been investigated in recent years [8] and
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reat effort has been devoted to the application of variety of non-

inear methods. Traditional analysis, mainly based on the conven-

ional statistical tests of mean, median or frequency components

rings only limited knowledge on the actual process hidden be-

ind the acquired data [9] . 

In recent years there has been a growing interest in the frac-

al properties of physiological data and also in the context of

EMG signals [10–12] . This work proposes the application of modi-

ed Multifractal Detrended Fluctuation Analysis (MFDFA) based on

mpirical Mode Decomposition (EMD) to the sEMG signals. The

MD and MFDFA techniques can be used to trace out the features

f non-linear and non-stationary signals. Moreover, both methods

ave a broad spectrum of applications individually. MFDFA, intro-

uced by Halsey et al. [13] and developed later by Kantelhardt

t al. [14] has been used in many disciplines and still attracts con-

iderable attention in the field of physiology, economics, climatol-

gy, to name but a few. In relation to electrophysiological signals,

FDFA brought a significant contribution to the analysis of heart

ate variability [15,16] . For Empirical Mode Decomposition (EMD)

n equally wide range of applications can be found such as the re-

oval of artifacts and noise reduction from the signals [17] . EMD

lso exhibits better results in the process of detrending in compari-

on, for example, with the typically used least square method [18] .

his aspect has been used in the modified detrending algorithm

hich is presented in this paper. The use of the EMD method in

he context of detrending operations results in a more accurate

https://doi.org/10.1016/j.medengphy.2018.03.007
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Figure 1. Two detrending methods: DFA (solid black) and EMD (solid red) are pre- 

sented for the profile y i of the sEMG example data (dashed blue). (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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trend which is not predetermined and therefore is closely related

to the nature of real data [19] . Moreover, it is documented in the

literature that this approach outperforms standard MFDFA for large

fluctuations [20] . 

2. Method 

2.1. Detrended Fluctuation Analysis (DFA) 

The DFA method was first proposed by Peng in 1994 for inves-

tigating the correlation in DNA structure [21] . Recent years have

seen a renewed importance in the application of this method to

biological data and also for distinguishing healthy and pathological

states [22] . The basic idea of this technique relies on the assump-

tion that the signal is influenced by the short-term and long-term

features. For the proper interpretation of effects hidden behind in-

ternal dynamics the signal is analyzed at multiple scales [23] . The

brief description of the original DFA algorithm is presented below. 

The procedure starts with the calculation of the profile y i as the

cumulative sum of the data x i with the subtracted mean 〈 x 〉 : 

y i = 

i ∑ 

k =1 

[ x k − 〈 x 〉 ] (1)

Next, the cumulative signal y i is split into N s equal non-

overlapping segments of size s . Here for the length s of the seg-

ments we use powers of two, s = 2 r , r = 4 . . . 11 . For all segments

v = 1 , . . . , N s the local trend y m 

v ,i is calculated. In a standard DFA

method, the trend is calculated by means of the least-square fit of

order m . In this work m = 2 was used. The variance F 2 as a func-

tion of the segment length s is calculated for each segment v sep-

arately. 

F 2 (s, v ) ≡ 1 

s 

s ∑ 

i =1 

(
y m 

v ,i − y v ,i 
)2 

. (2)

For the last step, the Hurst scaling exponent H is calculated as

the slope of the regression line of double-logarithmic dependence,

log F ∼ H log s . 

2.2. Empirical Mode Decomposition (EMD) 

The EMD is an iterative technique which decomposes the signal

x(t) into a finite number of Intrinsic Mode Functions (IMFs) c i ( t )

and final residual signal r n ( t ) 

x (t) = 

n ∑ 

i =1 

c i (t) + r n (t) . (3)

The latter can be interpreted as an actual trend. The calculated sig-

nal must satisfy two conditions in order to be an IMF: (i) the num-

ber of extrema and the number of zero crossings must be equal to

or differ at most by one; and (ii) the mean value of the upper and

lower envelope defined by local maxima and minima must be zero.

The standard EMD method often faces some difficulties, which are

recurrently the consequence of signal intermittency referred to as

the Mode-Mixing problem. Ensemble Empirical Mode Decomposi-

tion (EEMD) [24] and more recent Complete Ensemble Empirical

Mode Decomposition (CEEMD) [25] have been proposed in order

to overcome this complication. Both methods are based on the av-

eraging over several realizations of Gaussian white noise artificially

added to the original signal. For this work however, we use only

standard EMD due to the fact that only residual r n , i.e. the data

trend, is needed for further calculations and none of the individual

IMFs is considered here explicitly. 
.3. EMD based DFA 

The analysis is now branched into a standard DFA algorithm

nd non-standard based on EMD techniques. The former method

ses the least-square estimation of the order m . The latter utilizes

he fact that the residual r n (3) represents the local trend, thus the

tandard polynomial fit (DFA) can be replaced by a residuum for

ach segment [26] . An example of local trends calculated with both

ethods is presented in Figure 1 for the segment size s = 64 . The

light differences between solid black and red lines, which repre-

ent DFA and EMD methods respectively, influence the further re-

ults. 

.4. MFDFA 

MFDFA is based on the scaling properties of the fluctuations.

he brief description of the method is presented below, however,

or detailed specification we suggest works by Kantelhardt et al.

14,27] , Ihlen [28] or Salat et al. [29] . In order to extend the

onofractal DFA (2.1) to the multifractal DFA it is necessary to in-

icate the q th statistical moment of the calculated variance (2) . 

 q (s ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

( 

1 

2 N s 

2 N s ∑ 

v =1 

[ F 2 (s, v )] 
q 
2 

) 

1 
q 

, q � = 0 , 

exp 

{ 

1 

4 N s 

2 N s ∑ 

v =1 

ln 

[
F 2 (s, v ) 

]} 

, q = 0 . 

(4)

Next, the determination of the scaling law F q ( s ) ∼ s h ( q ) of the

uctuation function (4) is performed with the use of the log–log

ependencies of F q ( s ) versus segment sizes s for all values of q

eparately. The q -order Hurst exponent h ( q ) is required in order

o calculate further dependencies. The mass exponent is obtained

ia the formula 

(q ) = qh (q ) − 1 . (5)

t is then used to calculate a q -order singularity Hölder exponent

= τ ′ (q ) where the prime means differentiation with respect to

he argument. In turn, the q -order singularity dimension can be

onstructed 

f (α) = qα − τ (q ) = q [ α − h (q )] + 1 . (6)

he singularity dimension f ( α) is related to the mass exponent τ ( q )

y a Legendre transform. The multifractal spectrum, i.e. the depen-

ence f ( α) vs α is the final result of MFDFA method. 

The mf-spectrum describes how often the irregularities of cer-

ain degrees occur in the signal. f ( α) represent q -order singularity
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Figure 2. The raw signals truncated to 1/4 of the second at four stages of rectal 

cancer treatment: D 1 is assigned to the state before surgery, D 2 – D 4 correspond to 

1 month, 6 months and 1 year after the surgery, respectively. 
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imension and α stands for the q -order singularity exponent. The

ypical monofractal time series has a dense mf-spectrum around

he single point (α = 0 , f (α) = 1) . A large difference between peri-

ds when small and large fluctuations take place increases, in turn,

he width of the spectrum. 

In this work, we mainly focus on the two parameters describ-

ng the spectrum: width � and maximum αmax . The width reflects

he temporary variation of the local Hurst exponent or the tem-

oral variation of the fractal properties of the fluctuations of the

EMG signal. From the physiological point of view, it can be seen

s the quantity which characterizes the temporal fractal variability

f the signal, i.e. how the local fractal structures differ from the

lobal Hurst exponent among sEMG signal segments with larger

r smaller average fluctuations. Maximum αmax is assigned to the

urst exponent which appears most frequently in all the examined

egments. It describes the location of the most frequent singularity

t all scales. 

There are two general sources of multifractality which can af-

ect the shape of the mf-spectrum: (i) the broad probability density

unction which lies behind the data (or its fluctuations); (ii) differ-

nt behavior of the (auto)correlation function for large and small

uctuations. Furthermore, both situations are possible simultane-

usly. Simple data shuffling can test the possible source of multi-

ractality. In case (i) shuffling will not change the mf-spectrum, for

ii) it will destroy the effect completely as the shuffling will erase

he possible correlations. In the case of (i) and (ii) present simulta-

eously the spectrum will differ from the original one as the shuf-

ed series will exhibit somehow weaker multifractality [30] . 

. Material 

.1. sEMG signal source 

Data acquisition system consists of an anal probe developed at

he Laboratory of Engineering of Neuromuscular System and Mo-

or Rehabilitation of Politecnico di Torino in collaboration with the

ompany OT-Bioelettronica. Signals were obtained from 16 pairs

f silver bar electrodes of length 9 mm and width 1 mm each.

lectrodes were separated by 8 mm and arranged concentrically

t three levels 35–44 mm, 18–27 mm and around 9 mm of rectal

anal depth from the anal verge. The probe worked in conjunction

ith the standard PC over a 12-bit NI DAQ MIO16 E-10 transducer

National Instruments, USA). The sampling frequency was 2048 Hz,

hich for the 10 s of the measurement gave 20480 data points.

ow and high pass filters were used at 10 and 500 Hz respectively.

his resulted in a typical 3 dB bandwidth for the Analogue-to-

igital Converter. The analyzed time series were recorded at four

tages: before the treatment ( D 1 ) and one month ( D 2 ), 6 months

 D 3 ) and 1 year ( D 4 ) after the surgical procedure. The detailed in-

ormation about the surgery for rectal cancer and the role of sEMG

or the patient diagnosis can be found in [31] . 

Measurement protocol included, consecutively, a 1-min relax-

tion state; three 10 s recordings at rest; a 1-min relaxation and;

hree 10 s recordings at maximum voluntary contraction (MVC).

ach signal was recorded at three levels of anal canal depth, re-

pectively 5 cm, 3 cm and 1 cm. For our calculations, signal record-

ngs during voluntary contraction at the depth of 1 cm were used.

his specific choice of depth was dictated by the maximal ampli-

ude of the EMG signal resulting from the most superficial local-

zation of external anal sphincter muscle and the biggest bulk of

he muscle at this location. Figure 2 presents an example of the

aw signals at four stages of rectal cancer treatment. For better vi-

ualization of the character of a waveform, a narrow range of time

cale is presented. The difference in the amplitude values between

he state directly after operation ( D 2 ) and the rest of states ( D 1 ,

 , D ) is visible to the naked eye. One month after the opera-
3 4 
ion the values of amplitude are respectively lower in comparison

ith other stages. The signal used in this work is, in fact, the av-

raged signal from the first 3 channels which corresponds to the

rst three pairs of the electrodes. The nearest neighbors average

as performed due to the fact that the placement of the probe in

ubsequent measurements could be inaccurate. In other words, the

pecific electrodes may not be located exactly the same place at

he consecutive measurements after the surgery. 

.2. Patients 

The study included 15 subjects, 5 females of age range 46 to 71

average 53.4 years) and 10 males of age range 40 to 85 (average

2.8 years) diagnosed with rectal cancer and qualified for surgery.

ased on the localization of the rectal cancer, patients underwent

ither Low Anterior Resection (LAR, 9 patients), Anterior Resection

AR, 5 patients) or proctocolectomy (PC, 1 patient). 

. Results 

.1. Fluctuation analysis 

Clearly, MFDFA is not a black-box method and always requires

ome individual decisions. First of all, the choice of the scaling

ange can have a significant impact on the appropriate estimation

f the fluctuation function ( F q ) and consequently the final results

16,28] . For the calculations presented in this work, the considered

ange of scales are between s ∈ [2 4 , 2 11 ]. The parameter q should

onsist of positive and negative values in order to detect periods

ith small and large fluctuations [28] . In our case q ∈ [ −5 , 5] were

hosen. A set of q -order fluctuation functions F q vs segment size s

s presented in Figure 3 . The two different scale ranges are clearly

isible for all F q ( s ) characteristics. This bisection into two distinct

caling regimes plays a crucial role in the determination of the

 -order Hurst exponent h ( q ) and therefore impacts the further

nalysis. The results for DFA ( + ) and EMD-based ( × ) detrending

ethods are presented in Figure 3 . Two separate scaling domains

as accepted, namely s ∈ [2 4 , 2 6 ] and s ∈ [2 8 , 2 11 ]. Further analysis

as been performed for both of these regions separately. The mid-

le values s ∈ (2 6 , 2 8 ) are omitted, as there is no clear linear scaling

resent. 
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Figure 3. q -th order fluctuation function (4) with both detrending methods DFA of 

order 2 and EMD presented for data before the surgery D 1 for selected values of q . 

Characteristics were artificially shifted vertically for better visibility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Average values of the spectrum width 〈 �〉 and maximum of spectrum αmax 

together with the standard deviations presented for all channels at each state 

of the treatment D 1 – D 4 . Results are presented for the MFDFA and EMD-based 

MFDFA methods. 

Average spectrum width 〈 �〉 for s < 2 6 

D 1 D 2 D 3 D 4 

DFA 0.981 0.950 1.053 0.967 

± 0.362 ± 0.342 ± 0.418 ± 0.355 

EMD 0.848 0.808 0.880 0.812 

± 0.316 ± 0.310 ± 0.350 ± 0.307 

Average spectrum width 〈 �〉 for s > 2 8 

DFA 0.136 0.142 0.130 0.161 

± 0.068 ± 0.052 ± 0.055 ± 0.118 

EMD 0.107 0.112 0.100 0.131 

± 0.070 ± 0.053 ± 0.054 ± 0.118 

Maximum of the spectrum αmax for s < 2 6 

DFA 1.580 1.577 1.588 1.593 

± 0.107 ± 0.117 ± 0.110 ± 0.104 

EMD 1.405 1.414 1.414 1.423 

± 0.098 ± 0.100 ± 0.096 ± 0.089 

Maximum of the spectrum αmax for s > 2 8 

DFA 0.030 0.031 0.031 0.031 

± 0.011 ± 0.008 ± 0.012 ± 0.009 

EMD 0.017 0.017 0.017 0.017 

± 0.009 ± 0.007 ± 0.010 ± 0.008 

4

 

〈  

r  

a  

m

 

f  

s  

t  

v  

i  

m  

s  

i  

S  

n  

α  

w  

r  

(  

y  

o

4.2. Multifractal spectra 

The central result of this work is presented in Figure 4 . It sets

together the multifractal spectra at all levels of the treatment pro-

cess ( D 1 − D 4 ). Each graph includes spectra calculated by both

DFA and EMD detrending methods for small and large ranges of

scales separately. Additionally, the spectra obtained after shuffling

operations are presented on each individual chart. For all of the

examined cases, the relatively wide spectra for the short scales

s < 2 6 can be observed. For the large scales, s > 2 8 the small set

of points located at (0, 1) is visible. This indicates the multifrac-

tal character of the sEMG signal for the short scales s < 2 6 and a

rather monofractal character for the large scales s > 2 8 . For all of

the presented analyses, regardless of the method, the spectra cal-

culated for the small scaling region s < 2 6 , exhibit long right tails,

see Figure 4 . This means that the multifractal structure is sensitive

to the local fluctuations with small magnitudes on the short time

scales only [28] . On the comparison of the spectra obtained by the

two methods, a shift toward the smaller values of α (left side) of

the spectrum for the small scales s < 2 6 is visible for all signals in

the case of the EMD-based MFDFA. 

The spectra calculated for the shuffled data (see black line in

Figure 4 ) form a tight set of points, significantly shifted toward the

lower values of singularity exponent α. In other words, the shuf-

fling operation resulted in a complete destruction of multifractality

which occurs for the raw data. Thus it can be concluded that mul-

tifractal character of the raw data has its cause in different behav-

ior of the correlation function for large and small fluctuations. 
Figure 4. An example of multifractal spectra calculated for one case at four stages of re

found: right corresponds to the scaling region s < 2 6 , the middle represents the whole r

each scaling regions, two spectra are presented—the EMD based MFDFA (dark solid lines)

calculated by both methods are overlapped almost entirely. One may notice the generally

of α for the EMD-based detrending. 
.3. Statistics of spectral parameters 

Table 1 summarizes the average values of the spectrum width

 �〉 and the specific singularity exponent f (αmax ) = 1 which cor-

esponds to the maximum of the spectrum calculated for all of the

nalyzed cases and the whole set of 16 electrodes at each treat-

ent state. 

The location of the maximum of the spectrum is always found

or the greater values of the singularity exponent in the case of

tandard MFDFA method. Also the width of the spectrum is consis-

ently wider for the standard MFDFA. The shift toward the higher

alues of spectrum parameters for the standard MFDFA is also vis-

ble on the presented histograms, see Figure 5 . The differences are

ore evident in the graphs that characterize the maximum of the

pectrum for both small and large ranges of scales. The normal-

ty tests of presented probability distributions by means of the

hapiro–Wilk formula do not allow us to reject the hypothesis of

ormality for some selected cases. At the chosen significance level

= 0 . 05 , p -value is always greater than α for both the spectrum

idth and the maximum of the spectrum for the small scaling

ange ( s < 2 6 ) at the state one month after the surgical procedure

 D 2). Additionally, the same results were obtained for the state one

ear after the operation ( D 4) for the maximum of the spectrum

nly however. 
ctal cancer treatment D 1 – D 4 . At each panel, three sets of distinct spectra can be 

ange of scales s ∈ [2 4 , 2 11 ] after the shuffling operation and left set for s > 2 8 . For 

 and standard MFDFA (light dashed lines). In the case of shuffled data, the spectra 

 found degeneracy of the spectra for s > 2 8 and the shift toward the smaller values 
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Figure 5. The probability distributions of spectral parameters calculated for both EMD and DFA methods at each stage of treatment: large histograms represent the small 

scaling region s < 2 6 ; the insets stand for the histograms corresponding to the large range of scales. 
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Table 2 

The results of non-parametric Friedman test calculated for spectral 

parameters. 

Spectrum width( �) Max. of spectrum( αmax ) 

DFA EMD DFA EMD 

s < 2 6 

Anova χ2 17.178 18.365 7.254 10.104 

Kendall coeff. 0.012 0.013 0.005 0.007 

p -value 0.001 0.0 0 0 0.064 0.018 

s < 2 8 

Anova χ2 43.920 35.4 96 8 41.614 12.878 

Kendall coeff. 0.031 0.025 0.029 0.009 

p -value 0.0 0 0 0.0 0 0 0.0 0 0 0.005 

e  

e  

i

Figure 6 presents the box plot of spectral parameters calculated

or the small scaling region s < 2 6 . The comparison of mf-spectrum

arameters calculated by the DFA method for different stages of

reatment show a decrease in the average value of the spectrum

aximum αmax and spectrum width 〈 �〉 for the state one month

fter the surgery—D 2 and re-growth for the next state. It is no-

iceable that in the case of a maximum αmax the results for D 2 

btained by both methods are ambiguous. In contrast to the DFA

echnique, we observe the increase of the mean value of a max-

mum of the spectrum for the EMD method. In order to identify

he differences between individual stages of treatment, the Fried-

an test has been applied. It is a widely known non–parametric

quivalent of the one-factor analysis of variance for repeated mea-

urements. The values of ANOVA χ2 , Kendall’s coefficient of con-

ordance and the p -values are presented in Table 2 . The values

ighlighted in bold are assigned to a statistical significance of the

ifference between four comparing stages ( D 1 , D 2 , D 3 , D 4 ) at the

elected significance level α = 0 . 05 . Statistically significant differ-
nces between compared stages can be found for all parameters

xcept the maximum of spectrum calculated by the DFA method

n the small scales regime. 
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Figure 6. The box plots present the average values of spectral parameters with the standard error of the mean. The maximum of the spectrum and its width calculated by 

the DFA method are shown on two diagrams on the l.h.s. in contrast to the EMD results presented in the right column. 
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5. Discussion 

This work tests the multifractal character of the sEMG signals

recorded from an external anal sphincter at different stages of rec-

tal cancer treatment procedure. For each analyzed time series, two

distinct scaling regions were identified for which multifractal spec-

tra exhibit a different character. The multifractal and monofrac-

tal nature can be seen in the regions of the short and large time

scales respectively. Additionally, the multifractal spectra based on

the standard DFA were compared with the EMD based one. The

latter algorithm shifts the spectra toward the higher fluctuations

or smaller values of the singularity exponent. The average values

of the considered spectral parameters (width and maximum) for

individual stages of treatment are respectively lower in the EMD

case. This seems to be the generic behavior for the analyzed EMG

data. The changes of parameters between individual stages, D 1 –

D 4 , has exactly the same tendency when the results of those two

methods are compared. Additionally, the source of multifractal-

ity within the short timescales was identified as a result of the

long-range correlation effects for large and weak fluctuations. The

statistical analysis of spectral parameters with the non-parametric

Friedman ANOVA indicates the occurrence of statistically signifi-

cant differences between individual stages of treatment in the case

of spectral width for both detrending methods—DFA and EMD. Ap-

plied fractal methods also show the decreasing spectrum width

one month after the surgical operation for all of the patients. Some

limitation of this study is related to the medical aspect of our re-

search and concerns the problem of a relatively low number of

subjects. In a small group of patients, we observe relatively large

heterogeneity. Some of the obtained results might gain significance

along with an increasing number of subjects hence more experi-

mental work will be needed to verify more accurate variability of

spectral parameters among the individual stages of treatment. 

Although an experimental part of this work is still at an early

stage of development, it can be seen as a procedure which brings

a new understanding of the properties of the sEMG signals. There

is a constant need for the assessment of new nonlinear parame-

ters and methods for a better physiological understanding of the

nature of bio–medical signals. Multi-fractal description can serve

as a powerful tool in order to do that. 
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