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Abstract. We study the transport of an inertial Brownian particle moving 
in a symmetric and periodic one-dimensional potential, and subjected to both 
a symmetric, unbiased external harmonic force as well as biased dichotomic 
noise ( )η t  also known as a random telegraph signal or a two state continuous-
time Markov process. In doing so, we concentrate on the previously reported 
regime (Spiechowicz et al 2014 Phys. Rev. E 90 032104) for which non-negative 
biased noise ( )η t  in the form of generalized white Poissonian noise can induce 
anomalous transport processes similar to those generated by a deterministic 

constant force ⟨ ( )⟩η=F t  but significantly more eective than F, i.e. the particle 
moves much faster, the velocity fluctuations are noticeably reduced and the 
transport eciency is enhanced several times. Here, we confirm this result for 
the case of dichotomous fluctuations which, in contrast to white Poissonian 
noise, can assume positive as well as negative values and examine the role of 
thermal noise in the observed phenomenon. We focus our attention on the 
impact of bidirectionality of dichotomous fluctuations and reveal that the eect 
of nonequilibrium noise enhanced eciency is still detectable. This result may 
explain transport phenomena occurring in strongly fluctuating environments 
of both physical and biological origin. Our predictions can be corroborated 
experimentally by use of a setup that consists of a resistively and capacitively 
shunted Josephson junction.

Keywords: dynamical processes (theory), fluctuations (theory), stochastic 

processes (theory), transport properties (theory)
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1. Introduction

The question whether deterministic forces are preferred for transporting particles or 
maybe random perturbations should be applied is not simple to answer in a unique 
way. The first alternative has been commonly used because it is deterministic and 
therefore predictable. The latter seems to be bizarrely risky because it is random and 
therefore unpredictable. This opinion is based on our everyday experience that ran-
domness, stochasticity and noise are uncontrolled and therefore can lead to unintended 
consequences. However, there are phenomena in nature where randomness plays a con-
structive role. Examples include chemical reaction driven by thermal fluctuations [1], 
stochastic resonance [2] or Brownian motors [3, 4]. In [5], the influence of two forces 
on transport of the Brownian particle (motor) have been compared with respect to its 
eectiveness. One perturbation is a deterministic static force F  >  0 and the other is 
Poisson noise ( ) ⩾η t 0 of the same mean value as F, i.e. ⟨ ( )⟩η =t F. It has been shown 
that there are parameter regimes in which system driven by noise ( )η t  responses more 
eectively than a system driven by a static force F in the sense that the stationary 
average velocity of the Brownian motor is several times greater, its fluctuations are 
reduced distinctly and the transport eciency becomes greatly enhanced. In this paper, 
we analyse a similar problem by replacing the Poisson process with the dichotomous 
one. It is an extension of the previous studies in two aspects. The realizations of 
Poisson noise considered in [5] consist of only positive δ-kicks of an infinite amplitude 
which act on the system in an infinitesimally short period of time [6, 7]. On the other 
hand, dichotomous noise can assume both positive and negative values with random 
non-zero residence times. Moreover, in some limiting cases, dichotomous noise tends 
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to either Gaussian or Poisson white noise with positive as well as both positive-and-
negative δ-kicks. In this way, we can study a wider class of random perturbations and 
check to what extend the phenomenon of the noise enhanced eectiveness is univer-
sal and robust. Because the dichotomous process is characterised by four parameters 
(two possible states and two mean waiting times in these states), we expect to detect 
distinctly novel transport behaviour. Exploiting advanced numerical simulations with 
CUDA environment implemented on a modern desktop GPU [8], we search the full 
parameter space of the system and demonstrate how transport of the Brownian motor 
can be controlled by dichotomous noise parameters and reveal regimes in which the 
motor eciency is strongly enhanced.

The remaining part of the paper is organised as follows. In section 2 we present 
details of the model in terms of the Langevin equation for the Brownian motor. The 
next section provides a description of dichotomous noise together with its typical real-
izations. Section 4 is devoted to analysis of main transport characteristics, namely the 
long-time averaged velocity of the motor, its fluctuations and eciency. Conclusions 
contained in section 5 summarise the work.

2. Driven noisy dynamics

The archetype model of transport of the Brownian particle of mass M moving in a 
periodic potential V (x)  =  V (x  +  L) of period L and driven by both an external time-
periodic force = +G t G t T( ) ( ) of period T  and a static force F reads

( ) ( ) ( )ξ+ Γ = − + + Γ +′Mx x V x G t k T t F¨ ˙ 2 ,B (1)

where the dot and the prime denotes the dierentiation with respect to time t and the 
particle position ( )≡x x t , respectively. The parameter Γ is the friction coecient and 
kB is the Boltzmann constant. Contact with thermostat of temperature T is described 
by thermal fluctuations modelled here by Gaussian white noise ( )ξ t  of zero mean and 
unit intensity, i.e.

⟨ ( )⟩ ⟨ ( ) ( )⟩ ( )ξ ξ ξ δ= = −t t s t s0, . (2)
The rhs of (1) describes the influence of various forces on the dynamics. All except one 
are unbiased and their mean values are zero: =′V x 0⟨ ( )⟩  over its period L, ⟨ ( )⟩ =G t 0 

Figure 1. A Brownian particle moving in a symmetric and periodic potential V (x), 
driven by a harmonic force ( )ωA tcos  and subjected to a deterministic constant 
force F can be transported in a much more eective way when F is replaced by 
dichotomous noise ( )η t  of equal average bias ⟨ ( )⟩η =t F .

http://dx.doi.org/10.1088/1742-5468/2016/05/054038
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over its period T  and symmetric thermal noise ⟨ ( )⟩ξ =t 0 over its realizations. The 
only biased force is the static perturbation F. In the special case when both V (x) and 
G (t) are symmetric and additionally ≡F 0, there is no directed transport of the par-
ticle in the asymptotic long time limit. When the space reflection symmetry of V (x) 
and/or time reflection symmetry of G (t) is broken transport can be induced even if 
F  =  0 [9]. In this work we assume the symmetric potential V (x) and the driving G (t). 
Therefore to induce a directed motion of the motor, we have to postulate that the 
static force is nonzero ≠F 0.

The symmetric potential V (x) is assumed to be in the simple form

( ) ( / )π=V x V x Lsin 20 (3)
and the time-periodic force G (t) is chosen to be

( ) ( )= ΩG t A tcos . (4)
The model (1)–(4) has been intensively studied in the literature [10–12]. Here we replace 
the deterministic static force F by its random counterpart ( )η t  and compare their 
impact on effectiveness of the particle transport, see the figure 1. As a stochastic force 

( )η t  we consider a two state continuous-time Markov process, namely, dichotomous 
noise also known as a random telegraph signal. To be precise we study the following 
Langevin equation

( ) ( ) ( ) ( )ξ η+ Γ = − + + Γ +′Mx x V x G t k T t t¨ ˙ 2 B (5)

with the constraint on the mean value of dichotomous noise ⟨ ( )⟩η =t F.

3. Dichotomous noise

Dichotomous noise [13–15] assumes two states

( ) { }η = >− + + −t b b b b, , . (6)
The states b− and b+ are specified by any real numbers with the above restriction 
>+ −b b . In a typical scenario b−  <  0 and b+  >  0. The probabilities of transition per unit 

time from one state to the other are given by the relations

( )

( )

µ
τ

µ
τ

→ = =

→ = =

− + −
−

+ − +
+

Pr b b

Pr b b

1
,

1 
(7)

where in turn τ− and τ+ are mean waiting times in the states b− and b+, respectively. 
The mean value and the autocorrelation function of noise (6) read

η
µ µ
µ µ

τ τ
τ τ

=
+

+
=

+
+

+ − − +

+ −

+ + − −

+ −
t

b b b b
,〈 ( )〉 (8)

⟨ ( ) ( )⟩ /η η
τ

= τ−| − |t s
Q

e ,t s
 (9)
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where the intensity Q and the correlation time τ are expressed by the relations

µ µ τ
τ τ τ

= − = ++ − + −
+ −

Q b b ,
1 1 1

.3 2( ) (10)

In figure 2 we depict three illustrative realizations of dichotomous noise. Panel (a) 
presents symmetric fluctuations of the vanishing average value. Plots (b) and (c) show 
the asymmetric dichotomous process with the fixed mean value ⟨ ( )⟩η = >t 0.5 0. The 
reader may observe there the impact of changes in the parameters characterizing the 
noise, the states b+ and b− as well as the mean transition probabilities µ+ and µ − on 
its overall realizations.

In appropriate limits dichotomous noise tends to Poisson or Gaussian white noise 
[17]. In the the first case →∞+b  and τ →+ 0 in such a way that τ =+ +b const. On the 
other hand, the Gaussian white noise is achieved when τ τ→∞ →−∞ → →+ − + −b b, , 0, 0 
with τ =+ −b b const..

3.1. Dimensionless Langevin equations

In the following we make use of the dimensionless notation introduced in [16]. Therefore 

time will be scaled with the characteristic unit /τ = ML V0
2 2

0 and the x-coordinate of the 
Brownian particle with the characteristic length L, i.e. ˆ /τ=t t 0 and ˆ /=x x L. With these 

Figure 2. Three illustrative realizations of dichotomous noise, also known as the 
two-state continuous-time Markov process or a random telegraph signal. Panel (a): 
the symmetric dichotomous fluctuations with b+  =  1, b−  =  −1, µ =+ 1 and µ =− 1. 
Panel (b) and (c) depict the asymmetric process with b−  =  −1 and µ =− 1. The 
remaining parameters in plot (b) and (c) are b+  =  2, µ =+ 1 and b+  =  3.5, µ =+ 2, 
respectively.

η(t)

t

〈η(t)〉

η(t)

t

〈η(t)〉

η(t)

t

〈η(t)〉
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assumptions (1) and (5) can be converted into its dimensionless form. The corresp-
onding Langevin equations read

ˆ( ˆ) ˆ( ˆ) ˆ ( ˆ) ( ˆ ) ˆ( ˆ )γ ω γ ξ+ = − + + +′x t x t V x a t D t f¨ ˙ cos 2 ,T (11)

ˆ( ˆ) ˆ( ˆ) ˆ ( ˆ) ( ˆ ) ˆ( ˆ ) ˆ( ˆ )γ ω γ ξ η+ = − + + +′x t x t V x a t D t t¨ ˙ cos 2 .T (12)

In this scaling the particle mass m  = 1 and the dimensionless friction coecient /γ τ= Γ M0 . 

The rescaled potential ˆ ( ˆ) ( ˆ)/ ( ˆ)π= =V x V Lx V xsin 20  is characterized by the unit period: 
ˆ ( ˆ) ˆ ( ˆ )= +V x V x 1  and barrier height V0  =  2. Other rescaled dimensionless parameters are 

the amplitude a  =  LA/V0 and the angular frequency ω τ= Ω0  of the time-periodic driv-

ing. We introduced the dimensionless thermal noise intensity /=D k T VT B 0, so that the 

Gaussian white noise ˆ( ˆ)ξ t  of vanishing mean ⟨ ˆ( ˆ)⟩ξ =t 0 possesses the auto-correlation 
function ⟨ ˆ( ˆ) ˆ( ˆ)⟩ ( ˆ ˆ)ξ ξ δ= −t s t s . The rescaled static force is f  =  F L / V0. The dimensionless 
dichotomous noise now takes values ˆ( ˆ) { / / } { ˆ ˆ }η = ≡− + − +t b L V b L V b b, ,0 0 . Its mean value 
is ⟨ ˆ( ˆ)⟩ ( / )⟨ ( )⟩η η=t L V t0  and the correlation function ⟨ ˆ( ˆ) ˆ( ˆ)⟩ ( ˆ/ ˆ) [ ˆ ˆ / ˆ]η η τ τ= −| − |t s Q t sexp , 

with the intensity µ µ τ= −+ − + −Q b b3 2ˆ ˆ ˆ ˆ ( ˆ ˆ ) , where ˆ ˆµ τ µ µ τ µ= =+ + − −,0 0  and the correla-

tion time ˆ /τ τ τ= 0. From now on, for the sake of simplicity we shall skip all the hats in 

the above equations and parameters.
The significance of the investigated model is due to its widespread representation 

in experimentally accessible physical systems which can be described by use of the 
above equations. Among others, prominent examples that come to mind are the follow-
ing: pendulums [18], super-ionic conductors [19], charge density waves [20], Josephson 
junctions [21], Frenkel–Kontorova lattices [22], ad-atoms on solid surfaces [23] and 
cold atoms in optical lattices [24–26].

4. Transport characteristics

The most essential quantifier for characterization of transport processes occurring in 
periodic systems described by the driven noisy dynamics (11) or (12) is an asymptotic 
long time average velocity ⟨ ⟩v  given by the following formula

⟨ ⟩ [ ( )]
→

/

∫
ω
π

=
π ω

∞

+
Ev v s slim

2
d ,

t t

t 2

 (13)

where [ ( )]E v s  stands for the ensemble average over realizations of random forces and 
noises as well as over the set of initial conditions. The latter is mandatory especially 
in the deterministic limit of vanishing thermal and dichotomous noise since then the 
system is typically non-ergodic. An additional averaging procedure over the period 

/π ω2  of the external harmonic driving is necessary to extract only the time-independent 
component of the Brownian particle velocity which in the asymptotic long time limit 
assumes its periodicity [12, 27, 30].

Apart from this very basic transport characteristic indicating its directed nature 
there are other quantities which are useful to describe its eectiveness [16, 28, 29].  

http://dx.doi.org/10.1088/1742-5468/2016/05/054038
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Among them particularly important are fluctuations of velocity estimated by the 
variance

⟨ ⟩ ⟨ ⟩σ = −v v .v
2 2 2 (14)

Since typically in the long time limit the instantaneous Brownian particle velocity 
( ) [⟨ ⟩ ⟨ ⟩ ]σ σ∈ − +v t v v,v v  we easily see that when the velocity fluctuations are suciently 

large, ⟨ ⟩σ > | |vv , then for a certain period of time the particle may move in the direction 
opposite to its average velocity, the transport is intermittent and therefore not opti-
mal. An ideal situation occurs when the particle travels with the high speed ⟨ ⟩| |v  and 
simultaneously the fluctuations of velocity σv are small. Then the transport process is 
systematic and ecient.

Finally, in order to measure the eectiveness of transport we utilize the so called 
Stokes eciency [16, 29–31] which is evaluated as the ratio of the dissipated power 

⟨ ⟩=P f vout v  associated with the directional movement against the mean viscous force 
⟨ ⟩γ=f vv  to the input power Pin [16]

⟨ ⟩
⟨ ⟩

⟨ ⟩
⟨ ⟩

ε
σ

= =
+ −

=
−

P

P

v

v D

v

v D
.S

out

in

2

2
v
2

T

2

2
T

 (15)

Here, the form of the input power ⟨[ ( ) ] ⟩ω= +P a t f vcosin  and ⟨[ ( ) ( )] ⟩ω η= +P a t t vcosin  
supplied to the system by the external forces follows from the energy balance of the 
underlying equations of motion (11) and (12). We note that this definition of the  
eciency agrees well with our previous statement: the transport is optimized in  
the regimes which maximize the directed velocity and minimize its fluctuations.

4.1. General remarks on dynamics and transport properties

The deterministic system corresponding to (11) has a three-dimensional phase space, 
namely, { }ωx x t, ˙, . It is the minimal phase space dimension necessary for it to display 
chaotic evolution which is an important feature for anomalous transport to occur. Its 
dynamics is able to exhibit a diversity of behavior in phase space as a function of the 
system parameters. Trajectories can be periodic, quasiperiodic and chaotic. Typically, 
there are two possible dynamical states of the system: a locked state, in which the 
particle oscillates mostly within one or several potential wells, and a running one. 
Moreover, one can distinguish two classes of running states: either the particle moves 
forward without any back-turns or it undergoes frequent oscillations and back-scatter-
ing events. The running states are crucial for the directed transport properties.

In general, the force-velocity curve ⟨ ⟩ ⟨ ⟩( )=v v f  is a nonlinear function of the con-
stant force f. From the symmetries of the underlying Langevin equation of motion 
(11) it follows that it is odd in the force f, i.e. ⟨ ⟩( ) ⟨ ⟩( )− = −v f v f  and as a consequence 
⟨ ⟩( )= =v f 0 0. So, we need ≠f 0 to break the symmetry of the system and to induce 
directed transport in the asymptotic long-time regime. Typically, the velocity is an 
increasing function of the force f. Such regimes correspond to a normal transport 
behaviour. More interesting are, however, regimes of anomalous transport, exhibiting 
an absolute negative mobility (ANM) when ⟨ ⟩<v 0 for f  >  0. In accordance with the 
Le Chatelier–Braun principle [32] it is already known that the key ingredient for the 
occurrence of ANM is that the system is driven far away from thermal equilibrium into 

http://dx.doi.org/10.1088/1742-5468/2016/05/054038


Efficiency of transport in periodic potentials

8doi:10.1088/1742-5468/2016/05/054038

J. S
tat. M

ech. (2016) 054038

a time-dependent nonequilibrium state in such a way that it is exhibiting a vanishing, 
unbiased nonequilibrium response. This goal may be realized for example by applying 
the unbiased time periodic force G (t) as we did it in our work.

The underlying deterministic dynamics can be chaotic and therefore a fractal struc-
tures of certain domains must be expected to exist. The richness and diversity of subtle 
areas where ANM can be detected is large. The regions of ANM form stripes, fibres 
and islands [11, 33, 34]. At ‘low’ temperatures, we observe the refined structure with 
many narrow, slim and twisted regions of this eect. The occurrence of ANM may be 
governed by two dierent mechanisms. In some regimes it is solely induced by ther-
mal equilibrium fluctuations, i.e. the eect is absent for vanishing thermal fluctuations 
=D 0T . This situation is nevertheless rooted in the complex deterministic structure of 

the nonlinear dynamics governed by a variety stable and unstable orbits [10]. In other 
regimes, anomalous transport may also occur in the noiseless, deterministic system 
and can be understood if one studies the structure of the existing attractors and the 
corresp onding basins of attraction [12]. In this case, if temperature is increased, this 
subtle structure of ANM is increasingly smeared out and becomes smoother. Many pre-
viously existing domains of ANM start to shrink or vanish altogether. We detect some 
few robust regimes for which anomalous transport persists. Outside these domains, a 
normal response to the load f is found and it dominates in the parameter space.

4.2. Details of simulations

Unluckily, the Fokker–Planck equation corresponding to the driven Langevin dynamics 
described by (11) and (12) cannot be handled by any known analytical methods. For 
this reason, in order to study transport properties of the system, we have performed 
comprehensive numerical simulations of the investigated models. In particular, we have 
integrated the Langevin equations (11) and (12) by employing a weak version of the 
stochastic second order predictor corrector algorithm with a time step typically set 
to about /π ω⋅−10 23 . We have chosen the initial coordinates x (0) and velocities v (0) 
equally distributed over the intervals [0, 1] and [−2, 2], respectively. Quantities of 
interest were ensemble averaged over 103–104 dierent trajectories which evolved over 
103–104 periods of the external harmonic driving. All calculations have been done with 
the aid of a CUDA environment implemented on a modern desktop GPU. This proce-
dure allowed for a speed-up of a factor of the order 103 times as compared to a common 
present-day CPU method [8].

4.3. Results

Despite the use of innovative computer technologies the system described by (12) 
has a 9-dimensional parameter space { }γ ω µ µ+ − + −a D f b b, , , , , , , ,T  which unfortunately 
is still too large to analyse numerically in a systematic fashion. We have found that 
the normal transport regime (i.e. ⟨ ⟩>v 0 for f  >  0) dominates in the parameter space. 
However, we can also identify a remarkable and distinct property of anomalous trans-
port, namely, ANM. In both regimes, one may find parameter regions where the impact 
of dichotomous noise ( )η t  is destructive, i.e. the absolute value of the directed velocity 
⟨ ⟩v  is suppressed in comparison to the deterministic force ⟨ ( )⟩η=f t . However, there are 
also areas where ( )η t  acts constructively. Because normal transport regimes are not so 

http://dx.doi.org/10.1088/1742-5468/2016/05/054038


Efficiency of transport in periodic potentials

9doi:10.1088/1742-5468/2016/05/054038

J. S
tat. M

ech. (2016) 054038

interesting as ANM ones, below we will analyse only the last scenarios. Moreover, we 
restrict our attention to a regime of the nonequilibrium noise enhanced ANM phenom-
enon studied in detail in [5]. Unless stated otherwise, this case corresponds to the fol-
lowing set of parameters { } { }γ ω =a D, , , 1.546, 8.95, 3.77, 0.001T . This regime seems to 
be optimal in the sense that the negative mobility is most profound in a relatively large 
domain with relatively large values of the dimensionless velocity. On the one hand, it 
allows to compare the influence of Poisson and dichotomous noise. Moreover, it gives 
us possibility to state to what extend this eect is universal with respect to dierent 
kind of stochastic forcing.

We start with the asymptotic long time ensemble averaged velocity ⟨ ⟩v . In particular, 
we investigate whether the transport velocity can be enhanced when the deterministic 
force f acting on the Brownian particle is replaced by the stochastic perturbation ( )η t  
in the form of dichotomous noise. This is indeed the case as we show it in figure 3(a). 
The average velocity is depicted as a function of the biasing force of either deterministic 
or stochastic origin ⟨ ( )⟩η = >t f 0. Since in the vicinity of vanishing bias this transport 
characteristic points into the negative direction the presented regime corresponds to the 
absolute negative mobility phenomenon [10]. Moreover, when the Brownian particle 
is subjected to dichotomous noise instead of the constant static force the eect can be 
observed for slightly higher values of the bias. Finally, in both cases there exists an opti-
mal value for the bias ⟨ ( )⟩η = =t f 0.34 at which the average velocity takes its minimal 

Figure 3. Eciency of transport in the absolute negative mobility regime versus 
the biasing force of either a deterministic or a stochastic origin ⟨ ( )⟩η = >t f 0. The 
random perturbation is modelled by dichotomous noise. Panel (a): the asymptotic 
long time average velocity ⟨ ⟩v . Panel (b): the velocity fluctuations σv. Panel (c): 
the Stokes eciency εS. Parameters are γ = 1.546, a  =  8.95, ω = 3.77, =D 0.001T , 
b+  =  0.85, µ =+ 8.7, µ =− 0.708. The other dichotomous state b− is changing so 
that the condition ⟨ ( )⟩η =t f  is satisfied.

〈v〉

〈η(t)〉 = f

f

η(t)

σv

〈η(t)〉 = f

f

η(t)

εS

〈η(t)〉 = f

f

η(t)
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value. Surely the most interesting observation is that for dichotomous noise this mini-
mum is nearly two times more pronounced than for the corresponding deterministic force.

In figure 3 panels (b) and (c) we present the measures characterizing quality of 
the Brownian particle transport versus the biasing force f or ⟨ ( )⟩η t . In particular, plot 
figure 3(b) depicts velocity fluctuations σv. Unfortunately, they are an order of magni-
tude greater than the average velocity ⟨ ⟩v  presented in figure 3(a). However, still for 
the case of dichotomous noise ( )η t  the velocity fluctuations are significantly smaller 
than when the Brownian particle is subjected to the constant static force f. Notably, 
the counter-intuitive eect of reduction of fluctuations by fluctuating perturbation ( )η t  
is observed for a wide interval of the stochastic driving. This fact, together with the 
enlargement of the negative response illustrated in panel figure 3(a), is reflected in the 
dependence of the Stokes eciency εS on the biasing mechanism which is shown in 
figure 3(c). In both cases there exists an optimal value of eciency. However, in the 
case of dichotomous noise ( )η t  this quantifier grows by a factor four over the value 
obtained by application of the static force f.

We now turn to the analysis of the impact of temperature ∝D TT  on the transport 
eciency in the remarkable regime of the absolute negative mobility phenomenon. 
In figure 4(a) we present the dependence of the average velocity ⟨ ⟩v  on the thermal 
noise intensity DT. Since in the limiting case of the very low temperatures the particle 
response measured as its velocity is still negative we conclude that this anomalous 
transport eect has its origin in the complex, deterministic, albeit chaotic dynamics 
[10, 35]. It is significant that for low temperatures the particle velocity is larger in the 
case of the constant, static force f. However, evidently there is a finite window of the 

Figure 4. Impact of temperature ∝D TT  on the transport eciency in the absolute 
negative mobility regime. The biasing force is fixed to ⟨ ( )⟩η = =t f 0.34. Parameters 
modelling dichotomous fluctuations are as follows b+  =  0.85, b−  =  0.3, µ =+ 8.7, 
µ =− 0.708, for others see figure 3.
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thermal noise intensities DT for which the particle moves faster when it is subjected 
to dichotomous fluctuations ( )η t . For the opposite limiting case of high temperature 
there is no distinction between the response induced by these two types of forces. In 
panel figure 4(b) we depict the velocity fluctuations σv versus thermal noise intensity 
DT. Similarly, as in the previous case, for low temperatures fluctuations of velocity 
are smaller when the particle is propelled by the constant bias f. However, as thermal 
noise intensity grows we observe also a rapid increase of the velocity fluctuations up 
to their local maximum which is reached for ≈D 0.001T . On the other hand, when 
dichotomous noise acts on the particle then fluctuations of velocity are almost con-
stant in the entire presented interval of temperature. In particular, for the critical 
value ≈D 0.001T  they are noticeable lower. This fact has further consequences on the 
transport eciency εS which is plotted versus thermal noise intensity D T in panel 
figure 4(c). One can note that generally the constant bias f induces more eective 
transport than dichotomous noise ( )η t . Nonetheless, due to the explained fine tun-
ing between equilibrium (thermal) and nonequilibrium (dichotomous) fluctuations 
the opposite scenario can also be observed. This remark lead us to the novel conclu-
sion that the phenomenon of a nonequilibrium noise enhanced transport eciency is 
assisted by thermal fluctuations.

Since dichotomous noise can assume both positive and negative values, the question 
whether it is possible to manipulate the direction of the Brownian particle transport 
naturally arises. We answer this one in positive in figure 5 where we plot the asymptotic 
long time average velocity ⟨ ⟩v  as a function of both the transition probabilities µ+ and µ− 
for the fixed mean value of the dichotomous noise ⟨ ( )⟩η =t 0.34 and b+  =  0.85. Regions 
of the positive and negative velocity are clearly observed. Moreover, surprisingly, for 
the presented parameter regime the latter are more common. When the transition prob-
abilities are comparable then the transport occurs in a normal regime. Conversely, 
when there is a large dierence between them then we deal with the absolute negative 
mobility response. The phenomenon of multiple velocity reversals which is illustrated 
here is known for the driven periodic systems [9, 28, 36, 37]. By the fine tuning of the 
parameters describing dichotomous noise one can control the direction of transport in 
this setup.

Figure 5. The asymptotic long time average velocity ⟨ ⟩v  of the driven Brownian 
particle subjected to dichotomous noise ( )η t  presented as a function of the transition 
probabilities µ+ and µ−. The mean value of the stochastic perturbation is fixed 
to ⟨ ( )⟩η =t 0.34 and b+  =  0.85. Other parameters of the model are the same as in 
figure 3.
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The phenomenon of a nonequilibrium noise enhanced eciency of Brownian motors 
operating in the micro-scale domain has been recently illustrated for the case of uni-
directional fluctuations modelled by non-negative white Poissonan noise [5]. We now 
ask whether such a phenomenon can be observed when the Brownian particle is sub-
jected to bidirectional random perturbation which can assume both positive as well as 
negative values. Such a case is extremely important since it may help to elevate the 
understanding of the transport properties not only in physical but especially in biologi-
cal systems, where instead of systematic, deterministic load there are random forces 
usually acting without any specific direction [38]. The studied dichotomous noise is one 
of the simplest models which takes into account these prominent aspects of dynamics. 
In figure 6 we show that, indeed, for selected parameter regimes the phenomenon of 
noise enhanced eciency of the motor can be observed even if amplitudes of dichoto-
mous noise are of opposite signs. The region corresponding to the dichotomous states of 
opposite signs is indicated there with the light blue colour. Although the enhancement 
of transport eciency is particularly noticeable when both of the dichotomous states 
are positive this eect still survives in the case of the bidirectional perturbations. In 
the presented regime the optimal situation for this phenomenon to occur corresponds 
to the two positive states b+  >  0 and b−  >  0. However, remember that we restricted 
our analysis to only one set of parameters of the multidimensional space and therefore 
almost certainly there are regimes for which the reversed scenario is observed. This 

Figure 6. Eciency of transport in the absolute negative mobility regime versus 
the transition probability µ−. Panel (a): the asymptotic long time average velocity 
⟨ ⟩v . Panel (b): the velocity fluctuations σv. Panel (c): the Stokes eciency εS. The 
biasing force is fixed to ⟨ ( )⟩η = =t f 0.34. The other parameters characterizing 
dichotomous noise are to b+  =  0.85 and µ =+ 8.7. For the rest read figure 3. The 
region corresponding to the bidirectional dichotomous noise (b+  >  0 and b−  <  0) is 
indicated with the light blue colour.
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results shed new light on the possible role of fluctuations and random perturbations in 
transport phenomena occurring in the nano and micro-scale.

5. Summary

We have investigated the transport properties of an inertial Brownian particle moving 
in a one-dimensional, periodic and symmetric potential which in addition is exposed to 
a harmonic ac driving as well as dichotomous noise of finite mean bias ⟨ ( )⟩η =t f  and 
compared them to the attributes of the same particle but subjected to a constant deter-
ministic force f instead of the random perturbation. We have presented the tailored 
parameter regime of the absolute negative mobility phenomenon such that when f is 
replaced by ( )η t  of equal average value, the transport properties of the driven Brownian 
particle are significantly improved, i.e. its negative velocity is enhanced, the velocity 
fluctuations are reduced and the Stokes eciency becomes greater, each of them sev-
eral times. Moreover, we studied the dependence of these quantifiers on the temper-
ature of the system and revealed that this eect is assisted by thermal fluctuations as 
it emerges only for specific interval of temperatures. Dichotomous noise, in contrast 
to other random perturbation which has been studied in this context before [5], can 
assume both positive and negative values. Therefore we focused on the impact of this 
novel aspect of dynamics on the observed transport behaviour. We have demonstrated 
that by adjusting the parameters characterizing realizations of dichotomous noise it is 
possible to manipulate the direction of transport occurring in this setup. Furthermore, 
the most far-reaching conclusion of this work is that the phenomenon of nonequilib-
rium noise amplified eciency of Brownian particles moving in periodic media may 
be still detected also for the case of bidirectional fluctuations. This mechanism may 
explain transport phenomena appearing in strongly fluctuating environments where 
instead of the deterministic forces random the perturbation without any unique direc-
tion operates.

Our results can be validated, for example, by use of a setup consisting of the resis-
tively and capacitively shunted Josephson junction working in experimentally accessible 
regimes. The Langevin equation (1) has a similar form as an equation of motion for the 
phase dierence ( )Ψ = Ψ t  between the macroscopic wave functions of the Cooper pairs 
on both sides of the Josephson junction. The quasi-classical dynamics of the Josephson 
phase, which is well known in the literature as the Stewart–McCumber model [21, 39, 40]  
is described by the following equation

( ) ( )⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝
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2 2

2
.

2 2

0
B

 (16)

The left hand side contains three additive current contributions: a displacement cur-
rent due to the capacitance C of the junction, a normal (Ohmic) current characterized 
by the resistance R and a Cooper pair tunnel current characterized by the critical 
current I0. In the right hand side I (t) is an external current. Thermal fluctuations 
of the current are taken into account according to the fluctuation-dissipation theo-
rem and satisfy the Johnson–Nyquist formula associated with the resistance R. There 
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is an evident correspondence between two models: the coordinate /π= Ψ−x 2, the 
mass ( / )= �M e C2 2 , the friction coecient ( / ) ( / )Γ = � e R2 12  and the potential force ′V x( ) 
translates to the Josephson supercurrent. The time-periodic force G (t) in equation (1) 
corresponds to the external current I (t). The velocity =v ẋ translates to the voltage V 
across the junction. Therefore all transport properties can be tested in the setup con-
sisting of a resistively and capacitively shunted Josephson junction device.
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