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Currents in metallic rings with a quantum dot are studied in the framework of a Langevin equation for a 
magnetic flux passing through the ring. Two scenarios are considered: one in which thermal fluctuations 
of the dissipative part of the current are modeled by classical Johnson–Nyquist noise and one in which 
quantum character of thermal fluctuations is taken into account in terms of a quantum Smoluchowski 
equation. The impact of the amplitude and phase of the transmission coefficient of the electron through 
a quantum dot on current characteristics is analyzed. In tailored parameter regimes, both scenarios can 
exhibit the transition from para- to diamagnetic response of the current versus external magnetic flux. 
The type of response is more robust to changes of the amplitude of the transmission coefficient and more 
sensitive to changes of the phase around some values.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In the early 90s after the successful reduction of the signal-
to-noise ratio the three groups conducted pioneering experiments 
with the mesoscopic metallic rings. The careful measurements of 
Cooper [1], Gold [2], and Gallium–Aluminum–Arsenide/Gallium–
Arsenide [3] normal rings have shown the evidence of the exis-
tence of the persistent equilibrium currents flowing in the small 
metallic pieces of the rotational symmetry reaffirming an old idea 
of Friedrich Hund [4]. This very idea concerns the charge trans-
port in normal metallic ring. From the Ohm law we can expect 
that from the macroscopic point of view such current will die out 
within the relaxation time for a given material, which for metal is 
known to be rather short and of the order of 10−14 s. However, 
for sufficiently small circumferences the macroscopic description 
is no longer valid and ring reaches the region where both macro-
and micro-world meet making the requirement for the mesoscopic 
description [5] of the dynamics. At low enough temperature the 
effects of quantum coherence of electrons appear. Under the right 
circumstances some electrons in the ring are able to preserve its 
coherence which in turn results in a persistent (dissipationless) 
equilibrium current induced by the static magnetic field. In 1965 
Bloch [6] and five years later Kulik [7] confirmed Hund’s theory 
using the quantum-mechanical description. The real interest in the 
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topic of the persistent currents in normal rings arose after 1983 
paper by Büttiker et al. [8] where the existence of the persistent 
currents was shown also in the presence of the elastic dispersions.

First measurements of currents in the diffusive regime [2] have 
shown rather strong disagreement (10–200 times larger currents 
amplitudes) with the theoretically anticipated values. Later at-
tempts reduced this dissimilarity to a factor of around 2–3 [9]. 
Experiments with semiconducting materials in the close to bal-
listic regime usually agreed with the theory [3,10]. Only recently 
the scanning SQUID technique was used to record not only the 
response signal of the rings itself but also from the background. 
This method gave the possibility of the high precision measure-
ments of the current flowing in 33 different separate Gold rings 
[11] and finally confirmed qualitatively as well as quantitatively all 
aspect of the existing theoretical descriptions [12]. The alternative 
method was used to measure the currents in the Aluminum rings 
which were deposited on a cantilever [13]. A torque magnetometer 
whose vibration frequency can be precisely monitored was used as 
a detector. The measurements were performed with several differ-
ent cantilevers decorated with a single aluminum ring or arrays of 
hundreds or thousands of identical Aluminum rings. The analysis 
of the different magnetic susceptibilities seen in [11,13] based on 
the two-fluid model was addressed in [14–16].

In this work we present the analysis of electrical currents in the 
mesoscopic metallic (non-superconducting) ring with the quantum 
dot. The experiment with the measurements of the phase of the 
transmission coefficient through a quantum dot in the Coulomb 
regime was performed in 1995 [17]. Many different aspect of the 
persistent currents in the same scenario was studied rather inten-

http://dx.doi.org/10.1016/j.physleta.2015.04.039
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:jerzy.luczka@us.edu.pl
http://dx.doi.org/10.1016/j.physleta.2015.04.039
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2015.04.039&domain=pdf


L. Machura, J. Łuczka / Physics Letters A 379 (2015) 1654–1660 1655
Fig. 1. Schematic picture of the mesoscopic non-superconducting ring with a quan-
tum dot QD. The ring is threaded by a magnetic flux φ.

sively over the last two decades [18–22]. Similar schemes with 
the mesoscopic ring coupled to the quantum dot [23–25] or the 
quantum ring surrounding the quantum dot – a dot-ring nanos-
tructure (DRN) [26–28] was also addressed. Here we follow the 
model proposed by Moskalets [29] for a mesoscopic ring contain-
ing a potential barrier with a resonant level.

The work is organized in the following way: In Section 2, the 
model is described and the Langevin equation for the magnetic 
flux is presented both in the classical and quantum Smoluchowski 
regimes. Discussion of the results is presented in Section 3. In Sec-
tion 3.1, the stationary probability distribution of the magnetic flux 
is analyzed. In Section 3.2, the impact of parameters of the quan-
tum dot on average stationary currents is studied and regimes of 
paramagnetic and diamagnetic response are worked out. Section 4
contains summary and conclusions.

2. Flux dynamics of mesoscopic metallic rings with a quantum 
dot

We consider a mesoscopic metallic ring in an external magnetic 
field Be applied perpendicular to the plane of the ring (Fig. 1). At 
zero temperature the ring can display a persistent current I P when 
the size of the ring is reduced to the scale of the electron quan-
tum phase coherence length and the thermal length. At non-zero 
temperature T > 0, a part of electrons loses phase coherence due 
to thermal fluctuations and this part of electrons contributes to a 
dissipative Ohmic current I R associated with the resistance R of 
the metallic ring. The total magnetic flux φ piercing the ring is a 
sum of the external flux φe ∝ Be and the flux due to the flow of 
the current I , namely,

φ = φe + LI. (1)

Here, L stands for the self-inductance of the ring. The current I is 
a sum of the persistent and dissipative currents,

I = I P + I R . (2)

Now, following Ref. [29], we assume that the ring contains a poten-
tial barrier with a resonant level (a quantum dot). The expression 
for the persistent current I P = I P (φ) in such a system takes the 
form [29]

I P = I0 G(φ/φ0)

∞∑
n=1

An(T /T ∗) cos[n(kF l + δ̄F )]

× sin{n arccos[tF cos(2πφ/φ0)]}, (3)

where I0 is the maximal persistent current at zero temperature for 
the ring without the quantum dot. The amplitudes An(T /T ∗) are 
determined by the relation

An(T /T ∗) = T /T ∗

sinh(nT /T ∗)
. (4)

The characteristic temperature T ∗ is determined by the energy 
kB T ∗ = �F /(2π2), where kB is the Boltzmann constant and �F

is the level spacing at the Fermi surface for zero magnetic flux. 
The magnetic flux φ is quantized with the flux quantum φ0 = h/e
being the ratio of the Planck constant h and the electron charge e. 
Moreover, kF is the Fermi momentum and l is the circumference 
of the ring. The function

G(φ/φ0) = tF sin(2πφ/φ0)√
1 − t2

F cos2(2πφ/φ0)

(5)

modifies the maximal current due to the quantum dot. Here, tF

and δ̄F are the amplitude and phase of the transmission coefficient 
Tk = tk exp[iδ̄k] through a quantum dot for an electron with the 
Fermi momentum k = kF . For tF = 1 and δ̄F = 0 the expression (3)
reduces to a current for a pure metallic ring [30].

According to Ohm’s law and Lenz’s rule, the dissipative current 
I R = I R(φ) assumes the form

I R = − 1

R

dφ

dt
+

√
2kB T

R
�(t). (6)

It means that we include the effect of a nonzero temperature 
T > 0 by adding Johnson–Nyquist noise �(t) which represents 
thermal fluctuations. They are modeled by δ-correlated Gaussian 
white noise of zero mean and unit intensity,

〈�(t)〉 = 0, 〈�(t)�(s)〉 = δ(t − s). (7)

Inserting Eqs. (6) and (3) to the relation (1) yields

1

R

dφ

dt
= −1

L
(φ − φe) + I P (φ) +

√
2kB T

R
�(t). (8)

We note that this equation is a Langevin equation for the magnetic 
flux φ = φ(t). Indeed, it has the same form as a Langevin equation 
for an overdamped motion of a classical Brownian particle subject 
to the force F = F (φ) which reads

F (φ) = −1

L
(φ − φe) + I P (φ) (9)

and the noise intensity strength D = kB T /R is in accordance with 
the classical fluctuation–dissipation theorem [31,32]. Therefore we 
can apply the well-known mathematical and numerical methods 
for analysis of Eq. (8). First, we transform it to the dimensionless 
form (see [33,34] for details)

dx

ds
= −dV (x)

dx
+ √

2D0 ξ(s), (10)

where x = φ/φ0 is the dimensionless magnetic flux. The new 
time s = t/τ0, where the characteristic time τ0 = L/R . The ther-
mal noise intensity D0 = kB T /(φ2

0/L) = (ET ∗/Eφ)T0 = k0T0, where 
the dimensionless temperature T0 = T /T ∗ , ET ∗ = kB T ∗/2 is en-
ergy of thermal fluctuations at the characteristic temperature T ∗ , 
Eφ = φ2

0/2L is the elementary magnetic energy and k0 = ET ∗/Eφ

rescales intensity of thermal noise. Rescaled Gaussian white noise 
ξ(s) has exactly the same statistical properties as the dimensional 
version �(t). The rescaled potential V (x) takes the form

V (x) = 1

2
(x − xe)

2 + αW (x). (11)

The rescaled external magnetic flux is denoted by xe = φe/φ0 and 
the nonlinearity parameter α = LI0/2πφ0. The potential consists 
of the harmonic part (x − xe)

2/2 and the periodic part

W (x) =
∞∑

n=1

An(T0)

n
cos(nδF )

× cos{n arccos[tF cos(2πx)]}, (12)

where δF = kF l + δ̄F is a shifted phase.
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The Fokker–Planck equation corresponding to the Langevin 
equation (10) has the form [35]

∂

∂t
P (x, t) = ∂

∂x

[
dV (x)

dx
P (x, t)

]
+ D0

∂2

∂x2
P (x, t), (13)

where P (x, t) is a probability density of the process determined by 
Eq. (10). From this equation, all statistical properties of the mag-
netic flux can be obtained. In particular, its statistical moments 
〈xk(t)〉 are determined by the expression

〈xk(t)〉 =
∞∫

−∞
xk P (x, t)dx, k = 1,2,3, . . . (14)

For experimentalists, more interesting is the electrical current 
flowing in the ring. From Eq. (1) it follows that at any time the 
total current reads

I(t) = 1

L
(φ(t) − φe) (15)

and its average value is given by the relation

i(t) = 〈x(t)〉 − xe, i(t) = L

φ0
〈I(t)〉, (16)

where the dimensionless current i(t) has been introduced. In the 
stationary state,

i = 〈x〉 − xe, 〈x〉 =
∞∫

−∞
x P (x)dx, (17)

where P (x) = limt→∞ P (x, t) is a stationary probability density. It 
can easily be calculated from Eq. (13) for ∂ P (x, t)/∂t = 0 and zero 
stationary probability current yielding the distribution

P (x) = lim
t→∞ P (x, t) = N0 exp [−�C (x)] (18)

and N0 is the normalization constant. The generalized thermody-
namic potential �C (x) = V (x)/D0 depends on the external flux 
xe and the stationary probability density is given by the Boltz-
mann distribution. Eqs. (17)–(18) form a closed set from which 
the non-linear function i = f (xe) can be calculated determining 
the stationary current-flux characteristics.

2.1. Quantum Smoluchowski limit

Thermal fluctuations modeled as classical δ-correlated white 
noise are adequate to describe many physical phenomena even 
in low temperatures. However, in some low temperature regimes, 
quantum effects like tunneling, quantum reflections and purely 
quantum fluctuations are playing an increasingly important role 
and quantum character of thermal fluctuations should be taken 
into account. How to do it is not a simple task and the problem in 
a general case is still unsolved. In the so-called quantum Smolu-
chowski limit, the leading quantum corrections are incorporated in 
the modified diffusion coefficient D0 [36–44]. The modified diffu-
sion coefficient takes the form [37]

Dλ(x) = 1

β(1 − λβV ′′(x))
, β−1 = D0. (19)

The prime denotes the differentiation with respect to x. The di-
mensionless quantum correction parameter

λ = λ0

[
γ + �

(
1 + ε

)]
, (20)
T0
where

λ0 = h̄R

πφ0
, ε = h̄

2πC R

1

kB T ∗ . (21)

The psi function � is the digamma function (the logarithmic 
derivative of the gamma function). The γ ≈ 0.577 is the Euler 
constant and C is capacitance of the system related to the charg-
ing effects. The quantum correction parameter λ is a difference 
between the quantum 〈x2〉q and classical 〈x2〉c second statistical 
moments of the magnetic flux (see Eq. (5) in Ref. [36]),

λ = 〈x2〉q − 〈x2〉c. (22)

The modification of the diffusion coefficient (19) results in modifi-
cation of the Langevin equation, namely,

dx

ds
= −dV (x)

dx
+ √

2Dλ(x) ξ(s) (23)

and should be interpreted in the Ito sense [35]. The corresponding 
Fokker–Planck equation has the form

∂

∂t
P (x, t) = ∂

∂x

[
dV (x)

dx
P (x, t)

]
+ ∂2

∂x2 [Dλ(x)P (x, t)] . (24)

The stationary solution of this equation reads

P (x) = N0 D−1
λ (x)exp[−�λ(x)], (25)

where the generalized thermodynamic potential takes the form

�λ(x) = βV (x) − λβ2

2
[V ′(x)]2. (26)

We emphasize that the stationary distribution describes an equi-
librium state, but it is not a Gibbs state. Remember that the Gibbs 
state is correct in the limit of a weak coupling of the system with 
thermostat. The Smoluchowski limit corresponds to the strong cou-
pling regime.

3. Discussion of results

For the ring without a quantum dot, our model reproduces 
experimental data both for the diamagnetic and paramagnetic re-
sponse in the vicinity of zero magnetic field [15]. For the ring with 
a quantum dot, we have not found experimental data. Therefore, 
our work could inspire experimentalists to design experiments and 
verify our theoretical predictions revealed below: the influence of 
the transmission coefficient tF and the phase δF of the quantum 
dot on stationary current-flux characteristics.

The system has an 8-dimensional parameter space {xe, T0, k0, α,

λ0, ε, tF , δF }. It would be difficult to carry out a comprehensive 
analysis and present current-flux characteristics for all possible 
sets of parameters. Therefore, for numerical calculations, values 
of the parameters α = 0.1, k0 = 1 and T0 = 0.2 are kept fix. We 
include quantum corrections which are characterized by 2 parame-
ters: λ0 and ε . Their physical meaning is explained in Refs. [33,34]. 
Here, they will be fixed at the value of λ0 = 0.001 and ε = 100. 
The quantum dot is also characterized by 2 parameters: tF and δF

and their impact is displayed below. The similar analysis but for 
the pure metallic ring without the quantum dot is presented in 
our previous papers. The stationary solutions of the Fokker–Planck 
equation was addressed in Ref. [34] and the current-flux charac-
teristics was investigated in Refs. [15,16].
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Fig. 2. The stationary probability distribution P (x) of the dimensionless magnetic flux x in the classical Smoluchowski regime for the external magnetic flux xe = 0 and 
four values of the phase δF of the transmission coefficient. In each panel there are four curves which correspond to different values of the amplitude of the transmission 
coefficient: tF = 0 (green dashed–dotted), 1/3 (black dotted), 2/3 (blue dashed) and 1 (red solid). Other parameters are: α = 0.1, k0 = 1 and T0 = 0.2. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)
3.1. Stationary states

The stationary solution of the Fokker–Planck equations (13)
and (23) is given by the steady-state probability distribution P (x)
through the relations (18) and (25) without and with the quantum 
corrections, respectively. We consider the case xe = 0, i.e. when 
the external magnetic field is absent. In the case of classical ther-
mal fluctuations, the Boltzmann distribution is depicted in Fig. 2
for four different values of the phase of the transmission coeffi-
cient δF = 0 (top-left), 1 (bottom-left), π/2 (top-right), π (bottom-
right). For xe = 0, the probability distribution is symmetric with 
respect to the reflection x → −x. Moreover, it is invariant under 
the change of the phase P (x, δF ) = P (x, 2π − δF ). Therefore below 
we consider the interval of the phase δF ∈ [0, π ]. All four panels 
present the distributions for four different transmission coefficient 
tF = 0, 1/3, 2/3, 1.

For full transmission (i.e. tF = 1) the distribution possesses two 
local maxima for low valued phases, which reflects the bistabil-
ity of the generalized thermodynamic potential �C . This, in turn, 
means that in the steady-state the current can flow in two di-
rections: clockwise or counterclockwise (but the averaged current 
is zero!). For the phase δF � 1 and full transmission three local 
maxima can be found, with the most probable aside the local max-
imum around x = 0 (which denotes the zero current state). The 
additional local extrema, which doesn’t appear in the δF → 0 case, 
indicate the possible multi-stability. This means that again the 
self-sustaining persistent currents can appear without the applied 
magnetic flux and are more probable than the zero current state. 
For the moderate-to-high phases the local maximum of the prob-
ability distribution at x = 0 becomes the most protruding among 
all others located at more distant values of the flux x. It means 
that self-sustaining currents are difficult to induce. Moreover, the 
lifetimes of the induced currents related to the remote from zero 
extrema are also expect to be relatively short [34].

As already stated, in the quantum Smoluchowski limit, the sta-
tionary solution (25) describes the thermodynamic equilibrium. It 
is not, however, the quantum Gibbs state, as we deal with the 
strong coupling to the environment. In this case, the probability 
distribution depends explicitly on the coupling of the ring with 
thermostat via the resistance R in the parameter λ0 in Eq. (21). 
The equilibrium stationary distribution with quantum corrections 
is depicted in Fig. 3 for the same set of the parameters as in 
the classical counterpart in Fig. 2. For the quantum corrections 
we set λ0 = 0.001 and ε = 100. This means that the difference 
between the quantum and classical fluctuations of the dimension-
less magnetic flux is λ = 0.0075. The corrected distribution display 
somehow magnified features seen in the corresponding classical 
cases: minima are deeper and maxima are more pronounced.

3.2. Current-flux characteristics

In previous papers [15,16], impact of quantumness of thermal 
fluctuations on the current-flux characteristics has been studied. 
In this section we will focus on influence of the quantum dot 
on such characteristics. For zero external magnetic flux, xe = 0, 
the averaged stationary current is zero. It follows from the prop-
erties of the stationary distribution: it is an even function of x. 
The non-zero magnetic flux xe �= 0 breaks the x-reversal symme-
try and the non-zero averaged current can emerge. In Fig. 4 we 
depict the response of the metallic ring to the applied constant 
magnetic flux in the classical Smoluchowski regime (i.e. for λ = 0). 
It is worth to stress that the current characteristics for the ampli-
tude tF = 1 and the phase δF = 0 of the transmission coefficient 
(top panel, red curve) represent the situation with maximal cur-
rent. In other words, it is the same as the ring without quantum 
dot. The suppression of the generated signal which comes with 
the reduction of the transmission amplitude seems to be the usual 
situation. For tF = 0 it is impossible to generate current in the 
ring. For the phase δF ∈ (−π/2, π/2) the current response of the 
ring is paramagnetic for all non-zero amplitudes tF . In turn, for 
δF ∈ (π/2, 3π/2) the response is diamagnetic. Let us note the 
doubled period for the particular case δF = π/2. The analysis for 
slightly lower or higher phases shows simple para- or diamag-
netic single-periodic structure of current-flux characteristics, re-
spectively.

We now address the issue of whether, and to which extent, the 
quantum nature of thermal fluctuations can influence transport 
properties. We thus show impact of quantum corrections on the 
current characteristics in Fig. 5 for the fixed quantumness param-
eters λ0 = 0.001 and ε = 100. This figure is organized in exactly 
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Fig. 3. The stationary probability distribution P (x) in the quantum Smoluchowski regime for xe = 0 and four values of the phase δF of the transmission coefficient. In each 
panel there are four curves which correspond to selected values of the amplitude of the transmission coefficient: tF = 0 (green dashed–dotted), 1/3 (black dotted), 2/3 (blue 
dashed) and 1 (red solid). The remaining parameters read α = 0.1, k0 = 1, T0 = 0.2, λ0 = 0.001 and ε = 100. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 4. The stationary averaged current i in the classical Smoluchowski regime versus the external magnetic flux xe is presented for four different values of the phase δF . 
In each panel there are four curves which correspond to selected values of the amplitude of the transmission coefficient: tF = 0 (green dashed–dotted), 1/3 (black dotted), 
2/3 (blue dashed) and 1 (red solid). Other system parameters read α = 0.1, k0 = 1, T0 = 0.2. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
the same way as the previous one although the peculiarities are 
slightly different. For instance we cannot conclude here, that the 
maximal possible current amplitude is typically realized for tF = 1. 
In the classical Smoluchowski regime, the case tF = 1 is always the 
most optimal. With quantum corrections, it is intriguing to note 
that around δF = π/2 the maximal amplitude of the transmission 
coefficient does not provide maximal current. In fact the current is 
weaker for tF = 1 than for tF = 2/3 or even when tF = 1/3, see 
Fig. 5. In fact one can observe something similar to the transition 
from the paramagnetic to the diamagnetic state simply by chang-
ing the phase around δF = π/2. This is displayed in Fig. 6. For the 
phases a little bit higher than π/2, like one identify the classical 
picture – c.f. bottom panel in Fig. 5.
As the next point of analysis we ask about domains of pa-
rameters δF and tF where the current is paramagnetic and dia-
magnetic, see Fig. 6. In the case of classical thermal fluctuations, 
the current is always of a paramagnetic type in the interval δF ∈
(0, π/2) ∪ (3π/2, 2π) and is always of a diamagnetic type for 
δF ∈ (π/2, 3π/2). In the case of quantum thermal fluctuations, it 
is not true: these intervals depend on the amplitude of the trans-
mission coefficient. Nevertheless, the current is paramagnetic in a 
large interval around δF = 0 and is diamagnetic in a large inter-
val around δF = π , and the transition point is in a small interval 
around δF = π/2. The type of response is more robust to changes 
in the amplitude of the transmission coefficient and more sensitive 
to changes of the phase around the value π/2.
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Fig. 5. The stationary averaged current i in the quantum Smoluchowski regime versus the external magnetic flux xe is presented for four values of the phase δF and four 
values of the amplitude of the transmission coefficient: tF = 0 (green dashed–dotted), 1/3 (black dotted), 2/3 (blue dashed) and 1 (red solid). Other system parameters read 
α = 0.1, k0 = 1, T0 = 0.2, λ0 = 0.001 and ε = 100. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. The regimes of paramagnetic (i > 0) and diamagnetic (i < 0) response in 
dependence of the phase δF and the amplitude tF of the transmission coefficient 
through a quantum dot for an electron of the Fermi energy. The external mag-
netic flux is fixed at xe = 1/4. For the phase close to π/2 the current reversal 
is observed (upper panel). In bottom panel, the stationary averaged current in 
the quantum Smoluchowski regime is depicted as a function of the amplitude tF

and in the vicinity of the phase δF = π/2. Four curves correspond to four values 
of the phase δF = 0.95π/2, π/2, 1.01π/2, 1.05π/2. Other system parameters read 
α = 0.1, k0 = 1, T0 = 0.2, λ0 = 0.001 and ε = 100.

4. Summary

This paper presents the influence of the quantum dot on trans-
port properties of mesoscopic non-superconducting rings. The the-
ory is constructed in the framework of the Langevin equation for 
overdamped dynamics of the magnetic flux. We have considered 
the case when the system is driven by classical thermal noise in 
the Smoluchowski regime. It was then extended to account for 
quantum effects within the quantum Smoluchowski equation. The 
stationary probability distribution both in ‘classical’ and ‘quantum’ 
case is depicted for zero external magnetic flux. The current-flux 
characteristics are analyzed in detail. The impact of parameters 
characterizing the quantum dot on the current has been addressed 
in this work. The phase of the transmission coefficient plays the 
crucial role. In the ‘classical’ case, its crossover value is fixed to 
δF = π/2. Below this value, the current is paramagnetic while 
above this value the current is diamagnetic. For the ‘quantum’ case, 
the response threshold depends on other parameters of the system, 
nevertheless it is located close to the value π/2. Finally, we would 
like to mention that recent progress in entirely novel experimental 
techniques makes the verification of our findings possible and we 
hope that our work will contribute to the development of effective 
control methods of transport properties in mesoscopic systems.
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