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Abstract
The transport properties of two coupled Josephson junctions driven by ac currents and thermal
fluctuations are studied with the purpose of determining dc voltage characteristics. It is a
physical realization of the directed transport induced by a non-biased zero averaged external
signal. The ac current either (A) is applied to only one junction as a biharmonic current or (B)
is split into two simple harmonic components and separately applied to the respective
junctions. We identify the regimes where junctions can operate with the same as well as
opposite signs of voltages. A general observation is that in the same parameter regime,
scenario (B) is more efficient in the sense that the induced dc voltages take greater values.

PACS numbers: 05.60.−k, 74.50.+r, 85.25.Cp, 05.40.−a

(Some figures may appear in colour only in the online journal)

1. Introduction

Noisy transport in periodic arrangements [1] is widely present
nowadays in many branches of science—in physics, biology,
chemistry, economy and many others. On the physical ground,
the periodicity itself can be associated either with space
degrees of freedom such as in crystals, optical lattices and
systems of ring topologies or with time-periodic drivings such
as ac currents, magnetic or electric fields and rocking and
pulsating forces to name but a few. It also can be present
in both these domains. Typical realizations can range from
biophysics [2] with the description of biomotors movement
on asymmetric periodic microtubules [3] or transport
inside ion channels [4], to the recent experiments with
optical lattices [5, 6], quantum mesorings [7] or Josephson
junctions [8].

The Josephson effect has been known for half a
century [9]. So far it has been utilized for the definition
of the voltage standard [10] or for more practical devices
as elements in high-speed circuits [8] or even for future
applications in quantum computing devices [11]. Surprisingly,
after 50 years of intensive theoretical and experimental
research, we are still able to find new and uncommon

phenomena even in a simple system of two weakly connected
superconductors. Recently, the counterintuitive phenomenon
of absolute negative conductance (ANC) was reported in the
single driven, resistively and capacitively shunted Josephson
junction device subjected to both a time-periodic (ac) and a
constant biasing (dc) current [12]. The ANC phenomenon has
been confirmed by a suitable experiment with a Josephson
junction setup [13] and, very recently, with ultracold atoms
in optical lattices [6]. Other aspects of anomalous transport
phenomena such as the occurrence of a negative differential
conductance and the emergence of a negative nonlinear
conductance in the non-equilibrium response regime remote
from zero dc bias have been studied in a series of papers [14].
The influence of the unbiased biharmonic ac current on a
single junction has been considered in [15]. In recent years,
the dynamics of the phase difference of coupled junctions has
been addressed [16, 17].

This paper is organized as follows. In section 2, we
present the model of two interacting junctions. Next, in
section 3, the numerical investigation of transport properties
for two scenarios (A) and (B) of drivings applied to two
coupled junctions is compared. The paper ends with a
summary and conclusions in section 4.

0031-8949/12/014021+06$33.00 1 © 2012 The Royal Swedish Academy of Sciences Printed in the UK

http://dx.doi.org/10.1088/0031-8949/2012/T151/014021
mailto:jerzy.luczka@us.edu.pl
http://stacks.iop.org/PhysScr/T151/014021


Phys. Scr. T151 (2012) 014021 L Machura et al

Figure 1. The system of two coupled Josephson junctions
characterized by the critical Josephson supercurrents (Ic1, Ic2),
resistances (R1, R2), shunted by the external resistance R3,
influenced by the Johnson–Nyquist thermal noise sources
(ξ1(t), ξ2(t), ξ3(t)) and driven by the external currents
(I1(t), I2(t)).

2. Model of driven interacting junctions

From a more general point of view, we explore the system
consisting of two subunits (subsystems) interacting with each
other. The system is driven out of its equilibrium state
by an external force. As a particular realization of this
idea we propose two resistively shunted Josephson junction
devices characterized by the critical Josephson supercurrents
(Ic1, Ic2), resistances (R1, R2) and phases (φ1, φ2) [18].
A schematic circuit representing the model is shown in
figure 1. The system is externally shunted by the resistance R3

and driven by two current sources I1(t) and I2(t) acting on the
first and the second junction, respectively. We include in the
model the Johnson–Nyquist thermal noise sources ξ1(t), ξ2(t)
and ξ3(t) associated with the corresponding resistances R1, R2

and R3 according to the fluctuation–dissipation theorem.

The beauty of the standard Josephson theory lies in the
simplicity of the model. In the semiclassical regime, when
the spatial dependence of characteristics can be neglected and
photon-assisted tunnelling phenomena do not contribute, the
so-called Stewart–McCumber model [19] holds true (for an
extensive discussion on the validity of the model, see [10]).
In this regime, one can use the classical Kirchhoff current
and voltage laws, and two Josephson relations to derive two
evolution equations for the phases φ1 = φ1(t) and φ2 = φ2(t).
The dimensional version of the equations is presented in [17].
Here, we recall their dimensionless form, namely

φ̇1 = I1(τ ) − Ic1 sin φ1 + α[I2(τ ) − Ic2 sin φ2] +
√

D η1(τ ),

(1a)

φ̇2 = αβ[I2(τ ) − Ic2 sin φ2] + α[I1(τ ) − Ic1 sin φ1]

+
√

αβ D η2(τ ), (1b)

where φi = φi (τ ) for i = 1, 2 and the dot denotes a derivative
with respect to the dimensionless time τ expressed by the

dimensional time t as

τ =
2eV0

h̄
t, V0 = Ic

R1(R2 + R3)

R1 + R2 + R3
, Ic =

Ic1 + Ic2

2
. (2)

The parameters

α =
R2

R2 + R3
∈ [0, 1], β = 1 +

R3

R1
, D =

4ekBT

h̄ Ic
. (3)

All dimensionless currents I1(τ ), I2(τ ), Ic1 and Ic2 are in units
of Ic, e.g. Ic1 → Ic1/Ic. Thermal equilibrium noise sources
related to the resistances R1, R2 and R3 are modelled here
by the independent δ-correlated zero-mean Gaussian white
noises ξi (t) (i = 1, 2, 3), i.e.

〈
ξi (t)ξ j (s)

〉
= δi jδ(t − s) for

i, j ∈ {1, 2, 3}. The straightforward assumption of identical
temperature T felt by all parts of the setup allows for the
reduction of the number of original noises ξ1, ξ2 and ξ3 (see
figure 1) to their linear combination η1 and η2 in equations
(1a) and (1b).

The reader would find it easier to understand this
scenario within a pure mechanical picture. The dynamics
of the phase difference can be mapped onto the motion
of the Brownian particle. In this mechanical analogue the
correspondence between position x1 of the first particle with
the phase difference φ1 of the first junction can be settled
and the position x2 of the second particle can mimic the
phase difference φ2 of the second junction. If we imagine
two interacting particles moving along the periodic structure,
then the most significant quantifiers describing their transport
properties would be the average velocities of the first v1 =

〈φ̇1〉 and the second v2 = 〈φ̇2〉 particle, respectively. In terms
of the Josephson junction system it corresponds to the
dimensionless long-time averaged voltages v1 = 〈φ̇1〉 and
v2 = 〈φ̇2〉 across the first and second junctions, respectively
(from the Josephson relation, the dimensional voltage V =

(h̄/2e)dφ/dt and therefore dφ/dτ = V/V0). The junction
resistances (or conductance) translate then into the particles
mobility. Moreover, the phase space of the deterministic
system is three dimensional {φ1(τ ), φ2(τ ), ωτ } and therefore
gives rise to possible chaotic evolution, which is a key feature
of anomalous transport [12, 14, 20].

2.1. Identical junctions

Without loss of generality, we can reduce a number of
parameters assuming that two junctions are identical to R1 =

R2 and Ic1 = Ic2 ≡ 1. In such a case, αβ = 1 and equations
(1a) and (1b) take the symmetric form

φ̇1 = I1(τ ) − sin φ1 + α[I2(τ ) − sin φ2] +
√

D η1(τ ), (4a)

φ̇2 = I2(τ ) − sin φ2 + α[I1(τ ) − sin φ1] +
√

D η2(τ ). (4b)

The parameter α = R2/(R2 + R3) ∈ [0, 1] plays the role of
coupling strength between the junctions and can be tuned
by the variation of the external resistance R3. When α = 0
the set of equations (4) decouple into two independent
equations. It can be realized by taking R3 → ∞. The opposite
situation with two fully coupled junctions can be worked out
by designating R3 = 0. The noise strength D can be tuned
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by the temperature. The currents I1(τ ) and I2(τ ) are energy
sources pumped into the system and can be applied to one or
to both the junctions.

2.2. External current driving

A trivial way of inducing the dc voltage across both the
junctions is to apply the dc current to both the junctions
separately (in the mechanical analogue, it corresponds to
the static force). It appears that we can also achieve it by
applying the dc current to only one junction, but we have
to make sure that coupling is strong enough to call out the
response on the other junction too. This, however, seems to
be rather uninteresting and a well-known solution. What if
we abandon simple intuitive possibilities? We can exploit
the well-known ratchet effect [21] and induce the non-zero
dc voltage by applying a zero-mean external current. We
consider two scenarios. In the first scenario (A), the ac
driving is to be applied to only one of the junctions [15, 17],
namely

I1(τ ) = a1 cos(ωτ) + a2 cos(kωτ + θ), I2(τ ) = 0, (5)

where θ is the relative phase between the driving currents and
k is a real number.

In the second scenario (B), the external current is
split into two simple harmonic components applied to two
respective junctions, namely

I1(τ ) = a1 cos(ωτ), I2(τ ) = a2 cos(kωτ + θ). (6)

We know that the symmetric driving cannot itself induce the
non-zero dc voltage. However, we expect that the coupling
between junctions would have to play a crucial role in the
dynamics of the total system and a non-zero dc voltage
could be generated for α > 0. We ask which of the two
scenarios (5) or (6) is more efficient in the sense that the
induced dc voltages have greater amplitudes. In method (5),
we have the possibility to induce the non-zero dc voltage
just by the ratchet effect, cf the detailed discussion in [17].
In this case, even for α = 0 we still can find non-zero dc
voltage across the first junction. In scenario (6), the separated
symmetric ac currents cannot alone induce non-zero voltage
in the decoupled junctions. Setting the parameter α 6= 0, we
effectively incorporate the ratchet effect and in turn create a
prospect of dc transport in the system.

3. dc voltage characteristics

Stochastic differential equations (4) cannot be handled by
known analytical methods. For this reason we have carried
out extensive numerical simulations. We have used the
second-order Stochastic Runge–Kutta algorithm with the
time step of about 10−3

× (2π/ω). The initial phases φ1(0)

and φ2(0) have been randomly chosen from the interval
[0, 2π ]. Averaging was performed over 103–106 different
realizations and over one period of the external driving
2π/ω. Numerical simulations have been carried out using
the CUDA environment on the desktop computing processor
NVIDIA GeForce GTX 285. This gave us the possibility to
speed up the numerical calculations up to a few hundreds of

times more than on typical modern CPUs [22]. Below, we
present the results for a fixed frequency multiplier k = 2. This
will reflect the typical biharmonic driving studied previously
for Hamiltonian systems [23], systems in the overdamped
regime [24, 25] and for the moderate damping [26, 27]. If
the given parameter is not addressed directly in the plot,
we will keep the constant values as follows: the noise
strength (or equivalently the dimensionless temperature) D =

0.001, the frequency of the ac driving ω = 0.039 44, the
coupling strength α = 0.56, the relative phase θ = π/2 and
the amplitudes a1 = a2 = 1.

In the long-time limit, the averaged voltages 〈φ̇i (τ )〉 can
be presented in the form of a series of all possible harmonics,
namely

lim
τ→∞

〈φ̇i (τ )〉 = vi +
∞∑

n=1

vi (nωτ), i = 1, 2, (7)

where vi is a dc (time-independent) component and vi (nωt)
are time-periodic functions of zero average over a basic
period. For high frequency ω (i.e. fast alternating currents)
the averaged dc voltages are zero: very fast positive and
negative changes in the driving current cannot induce the dc
voltage and only multi-harmonic components of the voltages
can survive. In addition, if both amplitudes a1, a2 are smaller
than the critical supercurrents, then from the structure of the
model (4) it follows that the net voltage will be zero or very
close to zero.

In figure 2, the long-time averaged dc voltages across the
first (v1) and second (v2) junctions are shown in the amplitude
parameter plane {a1, a2}. There is clearly zero average voltage
for small values of both amplitudes. However, for larger
amplitudes in both scenarios (5) and (6) we can recognize four
operating regimes where

(i) v1 > 0 and v2 > 0,
(ii) v1 < 0 and v2 < 0,

(iii) v1 < 0 and v2 > 0,
(iv) v1 > 0 and v2 < 0.

Of course, the quantitative picture is different. One can easily
see that in the case of (5), the transport properties of the
first (driven) junction have a more complicated strips-like
structure with a larger area of negative voltage. For the second
(non-driven) junction, the dc voltage v2 can be two to three
times greater than v1. On the other hand, in the case of (6), the
regimes of negative voltage are smaller. We emphasize that
such complicated regimes of islands and tongues of negative
and positive dc voltages are not just rare occurrences: they
can be verified with numerically arbitrarily high-accuracy
calculations and over extended intervals in the parameter
space.

In figure 3, we have selected the region where for the
scenario (5) the dc voltage on the first (driven) junction stays
negative or zero (more precisely, so small as to be negligible)
throughout the presented range of both amplitudes. The
second (non-driven) junction shows all possible working
states with the negative, positive and zero dc voltage (see
the left panels of figure 3). In the same region but for the
second scenario (6), the first junction driven by the current
cos ωτ stays positive for all presented values of both current
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Figure 2. The stationary averaged dc voltages v1 and v2 across the first and the second junction. The dependences on the external ac current
amplitudes a1 and a2 are presented in panels (a) and (b) for the driving (5) acting on the first junction only and in panels (c) and (d) for the
driving (6) split between two junctions. Other parameters read as: the dimensionless temperature D = 0.001, the frequency ω = 0.039 44,
the coupling strength α = 0.56, the relative phase θ = π/2 and the frequency multiplier k = 2.

Figure 3. The stationary averaged dc voltages v1 and v2 across the first ( —— blue line) and the second ( - - - - red line) junction,
respectively. The dependences on the external ac current amplitudes a1 and a2 are presented for the driving (5) in panels (a) and (b) and for
the driving (6) in panels (c) and (d). The other parameters read as: the dimensionless temperature D = 0.001, the frequency ω = 0.039 44,
the coupling strength α = 0.56, the relative phase θ = π/2 and the frequency multiplier k = 2 and the amplitudes a1 = a2 = 1.

amplitudes a1 and a2, while the junction driven by the
current cos(2ωτ + π/2) can assume positive and negative
values. What is also striking is that in the case of (6) the
voltage characteristics of both junctions change with some
synchrony: the voltages increase or decrease when one of the
current amplitudes varies. This feature, in turn, is not found
in scheme (5).

As the next point of analysis, we ask about the role of
thermal fluctuations. It is presented in the upper panels of
figure 4. In this regime we can note the voltage reversal [28]
across the second junction: the voltage v2 can change its
sign from negative to positive values when the temperature is
increased. On the other hand, the voltage v1 is always negative
for scenario (5) and is always positive for scenario (6).
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Figure 4. The stationary averaged dc voltages v1 and v2 across the first ( —— blue line) and the second ( - - - - red line) junction,
respectively. The dependences on the noise strength (or dimensionless temperature) D (upper panels) and on the coupling strength α
(lower panels) are presented for the driving (5) in panels (a) and (b) and for the driving (6) in panels (c) and (d). The other parameters if not
addressed directly in the plots read as: the dimensionless temperature D = 0.001, the frequency ω = 0.039 44, the coupling strength
α = 0.56, the relative phase θ = π/2, the current amplitudes a1 = a2 = 1 and the frequency multiplier k = 2.

For high temperature, both voltages tend to zero. Next, we
address the issue of whether, and to what extent, the coupling
strength α can influence voltage properties. The results are
depicted in the bottom panels of figure 4. The first note is a
non-monotonic and irregular dependence of both voltages on
α with several minima and maxima. In scenario (6), a step-like
dependence of the voltage across the first junction is observed
for small values of the coupling α.

4. Summary

In this study we numerically analysed the role of ac current
drivings on the transport properties of resistively shunted
two coupled Josephson junctions. We identified a rich variety
of dc voltage characteristics in the parameter space where
transport can be experimentally monitored. We have detected
regions displaying positive and negative dc voltages, which
form complicated structures in the parameter space. We have
mainly focused the analysis on impact of selected regimes in
the parameter space on voltage properties. Other regimes of
parameters also modify voltage characteristics but here we do
not present all varieties. A general observation is that in the
same parameters regimes, the biharmonic ac driving applied
to only one junction results in a smaller dc voltage than in the
case when the ac current is split into two simple harmonics
and each is applied to the respective junctions.
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