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We study an inertial Brownian particle moving in a symmetric periodic substrate, driven by a zero-mean
biharmonic force and correlated thermal noise. The Brownian motion is described in terms of a generalized
Langevin equation with an exponentially correlated Gaussian noise term, obeying the fluctuation-dissipation
theorem. We analyze impact of nonzero correlation time of thermal noise on transport properties of the
Brownian particle. We identify regimes where the increase of the correlation time intensifies long-time trans-
port of the Brownian particle. The opposite effect is also found: longer correlation time reduces the stationary
velocity of the particle. The correlation time induced multiple current reversal is detected. We reveal that
thermal noise of nonzero correlation time can radically enhance long-time velocity of the Brownian particle in
regimes where in the white noise limit the velocity is extremely small. All transport properties can be tested in
the setup consisting of a resistively and capacitively shunted Josephson junction device.
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I. INTRODUCTION

Directed transport of particles can be driven by zero-
average forces. The second principle of thermodynamics ex-
cludes it for systems at thermodynamic equilibrium. There-
fore the system has to be at a nonequilibrium state and,
moreover, some symmetries of the system have to be broken
as, e.g., the reflection symmetry of the spatially periodic po-
tential or time symmetry of the external force. Presence of
both nonequilibrium conditions and asymmetry usually leads
to transport and these two constituents form the ratchet con-
cept. Transport in ratchet systems can be powered by me-
chanical, electrical, optical, chemical, or electronic means. A
large variety of models have been proposed and realized ex-
perimentally as solid state devices, cold atoms in optical lat-
tices, superconducting devices, geometrically asymmetric
lattices, to mention but a few, see the review �1�.

The zero-average force can be deterministic or stochastic.
An example of such a deterministic force is a time-periodic
ac driving consisting of one or several harmonics. In some
cases there is possibility of generating a charge or particle dc
current from pure ac driving, without the presence of an
explicit static bias. The well-known phenomenon is har-
monic mixing �2�. A paradigmatic model of this phenomenon
is based on the Newton-Langevin equation which describes a
particle moving in a spatially periodic potential �which mim-
ics, e.g., the motion of a charge particle in a crystal� and
driven by biharmonic force F�t� of two components of fre-
quencies �1 and �2 and amplitudes F1 and F2, respectively,

F�t� = F1 sin��1t� + F2 sin��2t + �� , �1�

where � is the phase-lag of two signals. Transport in such
systems has been studied in various contexts, mainly in the
overdamped regime �3�, for moderate damping �4�, also in
dissipative quantum systems �5�, both experimentally and
theoretically for cold atoms in the optical lattices �6–8�, and
for driven Josephson junctions �9�.

The sketch of the paper is as follows. In Sec. II, we briefly
present main elements of modeling for typical systems ex-
hibiting the ratchet effects when thermal fluctuations are de-

scribed by Gaussian white noise. Section III contains the
formulation of the corresponding model of non-Markovian
dynamics for systems driven by biharmonic signals and cor-
related thermal noise. In Sec. IV we analyze in detail influ-
ence of correlation time of thermal noise on transport prop-
erties. Finally, Sec. V provides summary.

II. PARADIGMATIC MODEL

An archetype of a ratchet is based on the Newton-
Langevin equation

mẍ + �ẋ = − V��x� + G�t� + ��t� , �2�

where m is a mass of the particle, � is the friction coefficient
and V�x� is a spatially periodic potential of period L, i.e.,
V�x�=V�x+L�. The deterministic force G�t� is a nonbiased
function of zero average over some time interval. The last
term ��t� is a stochastic force which can model thermal equi-
librium fluctuations and/or nonequilibrium noise.

Variations of this equation are unlimited. Putting formally
m=0, the overdamped system is modeled. In the case m
�0, inertial effects can be investigated. The potential V�x�
can be symmetric or asymmetric, the force F�t� can be sym-
metric or not, the same for ��t� unless it mimics thermal
noise, which is always symmetric. Problem of symmetry of
the stochastic driving ��t� is discussed in Ref. �10�.

If the process ��t� describes thermal equilibrium fluctua-
tions then ��t� is zero-mean, Gaussian white noise with the
Dirac delta autocorrelation function

���t���s�� = 2�kBT0��t − s� , �3�

where kB the Boltzmann constant and T0 denotes the tem-
perature. Note that this process in not correlated and in con-
sequence its correlation time �c=0. The noise intensity factor
2�kBT0 follows from the fluctuation-dissipation theorem
�11�. Gaussian white noise generates mathematically trac-
table models. In many real systems thermal noise is approxi-
mately white, meaning that the power spectral density is
nearly equal throughout the frequency spectrum. Addition-
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ally, the amplitude of the signal has very nearly a Gaussian
probability density function. However, an infinite-bandwidth
white noise signal is purely a theoretical construction. By
having power at all frequencies, the total power of such a
signal is infinite and therefore impossible to generate. In
practice, however, a signal can be “white” with a flat spec-
trum over a defined frequency band and it is a good approxi-
mation of many real-world situations. E.g., in electrical sys-
tems, the white noise modeling is correct at any practical
radio frequency in use �i.e., frequencies below about 80
GHz�. In the most general case, which includes up to optical
frequencies, the power spectral density of the voltage across
the resistor depends on frequency and the white noise ap-
proximation fails.

In the paper, we study transport in a spatially symmetric
substrate and the corresponding potential is reflection sym-
metric, i.e., V�x0+x�=V�x0−x� for some fixed value x0. One
of the simplest form of such a potential is given by the sinu-
soidal form

V�x� = �V sin�2	x/L� �4�

of the period L and the barrier height 2�V. The nonequilib-
rium driving G�t� is a biharmonic force and is chosen as a
particular case of Eq. �1�, namely,

G�t� = A�sin�
t� + � sin�2
t + ��� . �5�

Here A is the amplitude of the first harmonic, the factor �
scales the second harmonics, so that it has the resulting am-
plitude �A. The angular frequency 
 determines the time
period T=2	 /
 of the driving and � controls the phase shift
between two components of the biharmonic signal �Eq. �5��,
see Fig. 1 for details.

The Langevin Eq. �2� with the potential �Eq. �4�� has a
similar form as the equation describing dynamics of the
phase difference 
=
�t� between the macroscopic wave
functions of the Cooper pairs on both sides of the resistively
and capacitively shunted Josephson junction, which in the
literature is known as the Stewart-McCumber model �12,13�.
It is an evident correspondence between two models for the
coordinate x=
−	 /2 �14,15�. The biharmonic signal G�t�
in Eq. �5� corresponds to the external current I�t�. The veloc-
ity v= ẋ corresponds to the voltage V across the junction.
This correspondence allows for testing all transport proper-
ties of the system �Eq. �2�� and its generalizations by the
setup consisting of a resistively and capacitively shunted Jo-
sephson junction device.

III. NON-MARKOVIAN DYNAMICS

If the correlation time �c of thermal noise is much smaller
than the smallest characteristic �deterministic� time �x in the
considered system then the white noise modeling is a good
approximation. However, there are systems where this rela-
tion is not satisfied: the noise correlation time can be of order
or greater than �x �16–18�. In this case we shell not assume
the Markovian dynamics but rather invoke the generalized
Langevin equation �GLE� for the time evolution of the sys-
tem �Eq. �2��.

When the correlations comes into play the dynamics be-
comes non-Markovian and exhibits the memory-friction de-

scribed by the GLE in the form �11,17,19,20�

mẍ�t� + �
0

t

K�t − s�ẋ�s�ds = − U��x�t�,t� + ��t� , �6�

where ��t� is a stationary, zero-mean Gaussian stochastic
process modeling correlated thermal noise and the full po-
tential takes the form

U�x,t� = V�x� − A�sin�
t� + � sin�2
t + ���x . �7�

The autocorrelation function C�t−s� of the correlated Gauss-
ian thermal noise ��t� is related to the memory kernel K�t�
via the fluctuation-dissipation relation �11,17,19,20�,

C�t − s� = ���t���s�� = kBT0K��t − s�� . �8�

Let us note that for more realistic modeling based on corre-
lated thermal fluctuations we have to pay the price: Eq. �6� is
an integrodifferential equation with a Gaussian random term
which is difficult to handle by analytical or numerical means.
The resulting process is neither Gaussian nor Markovian. In
a general case, we do not know even a master equation for
the single-event non-Markovian probability p�x , ẋ , t� of the
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FIG. 1. �Color online� Biharmonic external ac driving G�t�
=A�sin�
t�+� sin�2
t+��� plotted for the amplitude A=1 and the
frequency 
=1, for four different second harmonic amplitude �
=0.1,0.5,1 ,2 and four phase shifts �=0,	 /2,1.65,2.41 which
corresponds to the later commented figures �see Figs. 3 and 4 for
details�.
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process determined by Eq. �6�. However, the problem is
much easier to treat if the non-Markovian process x�t� is a
projection of a higher-dimensional Markovian process. In
other words, it can be embedded in a higher �but finite� di-
mensional phase space and then Eq. �6� can be converted to
a set of first-order differential equations of Langevin type. It
can be done if the kernel K�t� obeys an ordinary differential
equation with constant coefficients.

A. Correlated thermal noise

Gaussian thermal noise ��t� is completely defined by its
correlation function C�t�. White noise corresponds to Eq. �3�.
Examples of correlated noise are: the exponentially corre-
lated noise �21�, harmonic noise �22�, algebraically corre-
lated noise �23,24�. Other variations of noise are also consid-
ered, as, e.g., when C�t� is a sum of exponentials �24–26�.

The simplest correlated noise is exponentially correlated
noise �because of the smallest number of parameters� known
as the Ornstein-Uhlenbeck �O-U� stationary stochastic Mar-
kov process for ��t� �17�. Its correlation function reads

���t���s�� = kBT0K��t − s�� =
�kBT0

�c
e−�t−s�/�c. �9�

Here �c is the correlation time of the O-U process. When the
correlation time �c→0 the correlation function �Eq. �9��
tends to the correlation function �Eq. �3�� and the O-U pro-
cess tends to white noise. Then Eq. �6� reduces to Eq. �2�.
Below, we study the case of O-U noise.

B. Markovian embedding dynamics

For the case of the O-U noise, the integral kernel �Eq. �8��
is an exponential function of the time. The exponential func-
tion obeys a first-order differential equation with a constant
coefficient. Therefore we can convert the integrodifferential
Eq. �6� into a set of ordinary stochastic differential equations.
To this aim we define the auxiliary stochastic process

w�t� =
�

�c
�

0

t

e−�t−s�/�cẋ�s�ds , �10�

which is an integral part of Eq. �6�. By means of the above
relation the GLE �Eq. �6�� can be rewritten in the form

mv̇�t� = − U��x�t�,t� − w�t� + ��t� , �11�

ẋ�t� = v�t� , �12�

ẇ�t� = −
1

�c
w�t� +

�

�c
v�t� , �13�

�̇�t� = −
1

�c
��t� +

1

�c

	2�kBT0��t� , �14�

The last Eq. �14� corresponds to the O-U process with the
exponential correlation function in Eq. �9� �27�. The station-
ary stochastic process ��t� describes Gaussian white noise of
zero-mean and correlation function ���t���s��=��t−s�. So,

we embedded a non-Markovian process in a four-
dimensional space in which the process is Markovian. It is
not a minimal dimension. It can be further reduced to the
three-dimensional space. To do it, let us note that for the
linear combination z�t�=��t�−w�t� we are able to subtract the
two last relations and reproduce the three coupled Langevin
equations �28�, namely,

ẋ�t� = v�t� , �15�

v̇�t� = −
1

m
U��x�t�,t� +

1

m
z�t� , �16�

ż�t� = −
1

�c
z�t� −

�

�c
v�t� +

1

�c

	2�kBT0��t� . �17�

In the following we shall analyze this set of three coupled
equations.

C. Dimensionless variables

The natural length scale for the system is settled by the
period L of the potential V�x�. For the adequate time scale we
have to consider several time scales �29�. Here we define the
characteristic time as �0

2=mL2 /�V which is convenient for
studying inertial effects. It can be obtained from Eq. �2� by
comparing the inertial term �with mass m� to the potential
force V��x� and inserting in both sides the characteristic
quantities, for detail see Ref. �29�. It leads to the scaling used
throughout this paper,

X =
x

L
, t̂ =

t

�0
, �18�

and finally to the rescaled evolution equations

Ẋ = Y , �19�

Ẏ = − W��X� + a�sin��t̂� + � sin�2�t̂ + ��� + Z , �20�

Ż = −
1

�̂c

Z −
�̂

�̂c

Y +
1

�̂c

	2�̂D�̂�t̂� , �21�

where the explicit form of remaining coordinates reads

Y =
�0

L
v, Z =

L

�V
z . �22�

The dot and prime denote the differentiation with respect to
the scaled time t̂ and the argument, respectively. Rescaled
velocity is designated by Y�t̂� and Z�t̂� symbolizes the di-
mensionless random force. The remaining rescaled param-
eters are �1� the friction coefficient �̂= �� /m��0=�0 /�L is de-
fined by the ratio the two characteristic times of the GLE—
previously defined �0 and the relaxation time of the velocity
degree of freedom �L=m /�; �2� the correlation time �̂c
=�c /�0; �3� the potential W�X�=V�x� /�V=W�X+1�
=sin�2	X� possesses the unit period and barrier height �V̂
=2; �4� the amplitudes of the external deterministic stimulus
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scales as a=LA /�V and the frequency �=
�0 �or the
equivalent period T=2	 /��; �5� the zero-mean white noise

�̂�t̂� is correlated as ��̂�t̂��̂�ŝ��=��t̂− ŝ� with a rescaled noise
intensity D=kBT0 /�V and can be interpreted as the ratio of
two energies, thermal energy, and half of barrier height of the
potential V�x�.

From now on we will use only above dimensionless vari-
ables and shall omit the “hats” in all quantities of Eqs.
�19�–�21�.

D. Method of analysis

The analytical methods to handle nonlinear Brownian
equations with memory friction are unknown to our knowl-
edge. Therefore we will explore the peculiarities of the sys-
tem �Eqs. �19�–�21�� by means of numerically calculated
long-time transport characteristics. In particular we shall fo-
cus on the current defined by the long-time averaged velocity
v
�Y�. The averaging is performed in the following way:
first the numerical mean over at least 103 realizations of the
GLE is calculated. This yields a time dependent quantity
which we next average over one period of the external field
T. In the process of calculating averages we must make sure
that we initiate the process evolutions with unbiased initial
conditions since the simulated asymptotic, long time dynam-
ics is not necessarily ergodic. We choose all initial positions
and velocities to be uniformly distributed over one potential
period �0,1� and the interval v� �−2,2�, respectively. From
the technical point of view we have employed stochastic
Runge-Kutta algorithm of the second order �30� with the
time step of �10−3–10−4�T. All numerical calculations have
been performed using CUDA environment on desktop com-
puting processor NVIDIA Tesla C1060 �31�.

IV. IMPACT OF CORRELATED THERMAL NOISE
ON TRANSPORT

In the long time limit, the averaged velocity can be pre-
sented in the form of a series of all possible harmonics,
namely,

lim
t→�

�Ẋ� = v + v��t� + v2��t� + ¯ , �23�

where v is a dc �time-independent� component and vn��t� are
time-periodic functions which time average over a basic pe-
riod are zero. In figures we present only the dc component v
of the long time, averaged velocity. From the symmetry
property of Eq. �6� it follows when v vanishes, for details see
�8,15,32–34�. In particular, in Ref. �33�, it has been shown
that if the force F�t� in Eq. �1� has the form

F�t� = �1 cos�q�t + �1� + �2 cos�p�t + �2� �24�

and �p ,q� are two coprime integers such that p+q is odd, the
asymptotic velocity can be approximated by the expression

v = B�1
p�2

q cos�p�1 − q�1 + �0� �25�

provided the amplitudes �1 and �2 are sufficiently small. The
quantities B and �0 depend on the parameters of the model
and � but neither on the amplitudes nor on the phases.

We remind that in the Hamiltonian regime Eq. �6� reduces
to the form

mẍ�t� = − U��x�t�,t� �26�

and for small amplitudes the dc velocity takes the sinelike
form �4,35�

v � sin � . �27�

Mechanism of the transport generation in Hamiltonian sys-
tems is explained in Ref. �36�. The Hamiltonian regime can
be realized in two cases: �i� in the dissipationless regime
when �=0 and D=0, �ii� in the limit of long correlation time,
�c�1.
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FIG. 2. �Color online� Influence of the second harmonic of the
external force G�t� on transport properties of the system �Eq. �6�� is
presented. Dependence of the drift velocity on both the relative
phase � �horizontal axis� and the correlation time �c of thermal
fluctuations �vertical axis� is depicted for increasing values of the
amplitude � of the biharmonic driving G�t� �top to bottom�. The
other rescaled parameters read a=4.2, �=4.9, �=0.9, D=0.001.
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For white noise case and in the weak damping regime, the
dissipation-induced phase lag �0 occurs, i.e., �4,35�

v � sin�� − �0� , �28�

where the phase lag �0 is determined by dissipation and
vanishes in the Hamiltonian limit.

We first address the issue of whether, and to which extent,
the nonzero correlation time �c of thermal fluctuations can
influence transport properties. We thus start our analysis by
studying the asymptotic dc velocity v as a function of both
the time-symmetry breaking phase � and the correlation time
�c. Our results are shown in Fig. 2 for selected values of the
driving amplitude � of the second harmonics. A general con-
clusion from all cases presented in this figure is the destruc-
tive influence of the strongly correlated noise: for long cor-
relation time �c the dc velocity is much smaller �virtually
zero� than for the small-to-moderate correlation time. Let us
note that the limit of the long correlation time ��c�1�, cor-
responds to the Hamiltonian regime in which transport is
noneffective in comparison with the dissipative regime. A
more accurate inspection reveals regions of weakly corre-
lated noise where reach diversity of transport characteristics
can be observed. To identify them we search the section �
=const of a constant phase in Fig. 2. The results are depicted
in Fig. 3 where the average velocity is plotted as a function
of the correlation time for three selected values of the ampli-
tude �=0.1,1 ,2 �the same as in panels �a�, �c�, and �d� of
Fig. 2�. The phase is fixed at the values �=1.65 and �
=2.41. In Fig. 3, one can identify the so termed current re-
versal phenomenon: the velocity changes its sign as one of
the parameters is varied. Here, even the multiple current re-
versal can be observed by changing the noise correlation

time. E.g., for the amplitudes �=1 in Fig. 3�a�, the average
velocity is negative for white noise, i.e., when �c=0. If the
correlation time �c increases, the velocity approaches zero
value: the particle does not exhibit directed transport. Upon
further increasing of �c, the velocity starts to increase to a
positive-valued local maximum. Next, it again starts to de-
crease reaching a negative-valued local minimum. For fur-
ther increase of �c, the velocity tends again to a positive-
valued local maximum. Finally, with increasing �c it
monotonically decreases toward smaller and smaller positive
values.

As the next point of analysis, we ask about the positive
role of weakly correlated noise, i.e., whether small �c can
intensify transport by enhancing the absolute value of the
average velocity. The answer is yes. As an example, consider
the case �=2 in Fig. 3�b�. For �c=0, the velocity is negative
and its absolute value is relatively large. If �c starts to in-
crease, the absolute value of the velocity also increases at-
taining a global maximum at some fixed value of �c �of order
10−1�. In this example, the weakly correlated noise enhances
transport in some interval of �c. On contrary, for the same
amplitude �=2 but different value of the phase �=1.65, if �c
starts to increase from zero, the absolute value of the velocity
decreases, see the case �=2 in Fig. 3�a�.

The influence of temperature is depicted in Fig. 4, where
two various regimes are illustrated. In panel �a� we show the
same curve as in panel �a� of Fig. 3 �the case �=1 and d0
=0.001�. In this regime we can note the most pronounced

FIG. 3. �Color online� The stationary averaged velocity vs the
correlation time �c of thermal noise for three values of the relative
amplitude � of the second harmonics and two values of the relative
phase �. Other parameters are a=4.2, �=4.9, �=0.9, D=0.001.

FIG. 4. �Color online� The stationary averaged velocity vs the
correlation time �c of thermal noise for three values of the relative
temperature D=0.0001,0.001,0.01 and two sets of pairs �=1, �
=1.65 �panel �a�� and �=0.5, �=3.24 �panel �b��. Please note the
destructive role of the small correlation time �c on panel �a� and the
antagonistic effect of the constructive impact of �c in panel �b�. For
large values of �c the average velocity is always much smaller and
virtually is zero. Other parameters are a=4.2, �=1, �=4.9, �=0.9.
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influence of temperature in vicinity of the first maximum: if
temperature increases, the first maximum is significantly re-
duced and velocity even changes its sign. So, by changing
the temperature one can obtain the current reversal, see the
curves for d0=0.001 and d0=0.01 in panel �a�. We have
searched a wide part of the parameter space in order to locate
regions of temperature robustness. The conclusion is that for
large values of the correlation time �in most cases �c�1� the
system is resistant to increase of temperature, at least to val-
ues presented in Fig. 4. On the contrary, for small correlation
times, there are regimes where the system is sensitive to
changes of temperature and increase of temperature re-
sponses in smaller values of the absolute value of velocity,
see panel �b� of Fig. 4. It is a region of destructive role of
temperature but the constructive role of short correlation
times of thermal fluctuations: a first increase of �c from zero
results in increase of the velocity. For moderate and long
correlation time, the temperature smoothes the dependence
on the correlation time similarly as in both panels of Fig. 4.

Finally, in Fig. 5 we present a regime where the amplitude
of the second harmonics is much greater than the first har-
monics �here ten times greater�. In such a case, the degree of
symmetry breaking is very small: the influence of the first
harmonics is much smaller than the second one �remember
that if any of two harmonics is absent, there is no transport in
the system�. Therefore the dc velocity is expected to be ex-
tremely small �practically, it is zero�. It is true but only for
short correlation times �from 0 to 1 in Fig. 5�. When we,
however, increase �c a little bit more and pass the value of
about 1, the significant net transport occurs. For some values
of the phase � the velocity is negative velocity ��=	 /2�; for
other values of � it shows the positive response ��=3	 /2�.
In some other cases it exhibits the velocity reversal phenom-
enon as, e.g., for �=	.

We have mainly concentrated the analysis on impact of
the correlation time of thermal noise on transport properties
of the Brownian particle. Other parameters modify directed
movement as well. We do not present all varieties but yet we
refer to our webpage �37� where the more detailed analysis is
presented.

V. SUMMARY

We have analyzed transport of the inertial Brownian par-
ticle moving in a symmetric periodic potential and driven by
a zero-mean biharmonic force and exponentially correlated
thermal Gaussian noise. We have investigated the impact of
the nonzero correlation time of thermal noise on transport
properties of the Brownian particle. We have identified re-
gimes where the increase of the correlation time intensifies
long-time transport of the Brownian particle and regimes
with the opposite effect. We have found that the correlation
time can induce multiple current reversal.

The richness and diversity of influence of nonzero corre-
lation time of thermal noise on non-Markovian dynamics
determined by Eq. �6� is summarized and visualized in Fig.
6. This picture looks like a landscape after intensive eruption
of volcanoes: there are mountains with sharp summits and
volcanoes with deep craters. This landscape can continuously
be deformed to other complicated landscapes by changing
parameters of the model. If you are long-suffering, you can
discover your own original landscapes of non-Markovian dy-
namics driven by biharmonic signals. The diversity of subtle
structures hidden in Eq. �6� is infinitely large. It comes to our
mind a loose analogy to a Mandelbrot set which conceals
beautiful forms of Julia sets, fractals and extremely difficult
mathematics.
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FIG. 5. �Color online� The stationary averaged velocity vs the
correlation time �c of thermal noise for three values of the relative
phase �=	 /2 blue �solid� line, 	 green �dashed� line, 3	 /2 red
�dashed-dotted� line. Other parameters are a=0.4, �=10, �=4.9,
�=0.9, D=0.001. FIG. 6. �Color online� Illustration of role of the thermal noise

correlations and the relative phase of driving two harmonics on
transport of the Brownian particle. It is a regime where long corre-
lations of thermal noise destruct transport. The parameters are a
=4.2, �=0.5, �=4.9, �=0.9, D=0.001.
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