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a b s t r a c t

We study a resistively and capacitively shunted Josephson junction, which is driven by a combination of

time-periodic and constant currents. Our investigations concern three main problems: (A) the voltage

fluctuations across the junction; (B) the quality of transport expressed in terms of the P �eclet number;

and (C) the efficiency of energy transduction from external currents. These issues are discussed in

different parameter regimes that lead to: (i) absolute negative conductance; (ii) negative differential

conductance; and (iii) normal, Ohmic-like conductance. Conditions for optimal operation of the system

are studied.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Transport processes in periodic systems play an important role
in a great variety of everyday life phenomena. Two prominent
examples are the electric transport in metals providing a
prerequisite of modern civilization and the movement of so-
called molecular motors (like kinesin and dynein) along micro-
tubules in biological cells which are of crucial relevance for the
functioning of any higher living organism. Josephson junctions
belong to the same class of systems being characterized by a
spatially periodic structure. In the limiting case of small tunnel
contacts the mathematical description of a Josephson junction is
identical to that of a Brownian particle moving in a periodic
potential. Such models have also frequently been employed under
non-equilibrium conditions to describe Brownian ratchets and
molecular motors, see Refs. [1,2] and references therein. Of
particular importance for technological applications are ‘rocked’
thermal Brownian motors operating either in overdamped or
underdamped regimes, e.g. see in Ref. [3]. The majority of papers
on transport in periodic systems are focused on the asymptotic
long time behavior of averaged quantities such as the mean
velocity of a molecular motor, or the mean voltage drop in a
Josephson contact [4]. The main emphasis of these works lies on
formulating and exploring conditions that are necessary for the
generation and control of transport, its direction, and magnitude
as well as its dependence on system parameters like temperature
and external load. Apart from these well investigated questions
other important features concerning the quality of transport
though have remained unanswered to a large extent. The key to
ll rights reserved.
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these problems lies in the investigation of the fluctuations about
the average asymptotic behavior [5].

In the present paper we continue our previous studies on
anomalous electric transport in driven, resistively and capacitively
shunted Josephson junction devices [6–8]. These investigations
were focused on the current–voltage characteristics, in particular
on negative conductances. In contrast, in the present paper we
investigate the fluctuations of voltage, the diffusion processes of
the Cooper pair phase difference across a Josephson junction as
well as the energetic performance of such a device.

The paper is organized as follows. In the next section, we
briefly describe the Stewart–McCumber model for the dynamics
of the voltage across a junction. In Section 3, we study voltage
fluctuations, phase difference diffusion, and the efficiency of the
device. Conclusions are contained in Section 4.
2. Model of resistively and capacitively shunted Josephson
junction

The Stewart–McCumber model describes the semi-classical
regime of a small (but not ultra small) Josephson junction for
which a spatial dependence of characteristics can be neglected.
The model contains three additive current contributions: a Cooper
pair tunnel current characterized by the critical current I0, a
normal (Ohmic) current characterized by the normal state
resistance R and a displacement current due to the capacitance
C of the junction. Thermal fluctuations of the current are taken
into account according to the fluctuation–dissipation theorem and
satisfy the Nyquist formula associated with the resistance R. The
quasi-classical dynamics of the phase difference f ¼ fðtÞ between
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the macroscopic wave functions of the Cooper pairs on both sides
of the junction is described by the following equation [9,10]:

‘
2e

C €f þ
‘
2e

1

R
_f þ I0 sinðfÞ ¼ Id þ Ia cosðOt þj0Þ þ xðtÞ; ð1Þ

where the dot denotes the differentiation with respect to time, Id

and Ia are the amplitudes of the applied direct (dc) and alternating
(ac) currents, respectively, O is the angular frequency and j0

defines the initial phase value of the ac-driving. The noise term
xðtÞ takes into account effects of thermal equilibrium fluctuations
and is related to the Johnson noise associated with the resistor R.
Such thermal fluctuations are usually modeled by zero-mean
Gaussian white noise and according to the fluctuation–dissipation
theorem of second kind [11] its correlation function has the form
(for details see Ref. [9, Section 6.4]): /xðtÞxðsÞS ¼ ð2kBT=RÞdðt � sÞ,
where kB is the Boltzmann constant and T is temperature of the
system.

The limitations of the Stewart–McCumber model and its range
of validity are discussed e.g. in Ref. [10, Sections 2.5 and 2.6].
There are various other physical systems that are described by
Eq. (1). A typical example is a Brownian particle moving in the
spatially periodic potential UðxÞ ¼ Uðxþ LÞ ¼ �cosðxÞ of period
L ¼ 2p, driven by a time-periodic force and a constant force [5]. In
this case, the variable f corresponds to the spatial coordinate x of
the Brownian particle and ac and dc play the role of periodic
driving and a static tilt force, respectively, acting on the particle.
Other specific systems are: a pendulum with an applied torque
[9], rotating dipoles in external fields [12,13], superionic con-
ductors [14] and charge density waves [15].

It is convenient to transform Eq. (1) to a dimensionless form.
We rescale the time t0 ¼ opt, where op ¼ ð1=‘ Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
8EJEC

p
is the

Josephson plasma frequency expressed by the Josephson coupling
energy EJ ¼ ð‘ =2eÞI0 and the charging energy EC ¼ e2=2C. Then Eq.
(1) takes the form [9,10]

d2f
dt02
þ g df

dt0
þ sinðfÞ ¼ i0 þ i1 cosðO1t0 þj0Þ þ

ffiffiffiffiffiffiffiffiffi
2gD

p
Gðt0Þ: ð2Þ

The dimensionless damping constant g ¼ 1=opRC is given by
the ratio of two characteristic times: t0 ¼ 1=op and the relaxation
time tr ¼ RC. This damping constant g measures the strength
of dissipation. The ac amplitude and angular frequency
are i1 ¼ Ia=I0 and O1 ¼ Ot0 ¼ O=op, respectively. The rescaled
dc strength reads i0 ¼ Id=I0. The rescaled zero-mean Gaussian
white noise Gðt0Þ possesses the auto-correlation function
/Gðt0ÞGðuÞS ¼ dðt0 � uÞ, and the noise intensity D ¼ kBT=EJ is
given as the ratio of two energies, the thermal energy and the
Josephson coupling energy (corresponding to the barrier height).

Because Eq. (2) is equivalent to a set of three autonomous first
order ordinary differential equations, the phase space of (2) is
three-dimensional. For vanishing diffusion constant, D ¼ 0, the
system becomes deterministic. The resulting deterministic non-
linear dynamics ðD ¼ 0Þ exhibits a very rich behavior ranging from
periodic to quasi-periodic and chaotic solutions in the asymptotic
long time limit. Moreover, there are regions in parameter space
where several attractors coexist. In the presence of small noise
these attractors still dominate the dynamics in the sense that
most of the time the trajectory stays close to one of these
attractors. Only rarely, transitions between the attractors take
place. So, the locally stable states of the noiseless dynamics
become metastable states in the presence of weak noise. Apart
from that, the presence of noise may also led the system come
close to deterministic unstable orbits which it may follow for
quite some time.

Strictly speaking, the deterministic regime D ¼ 0 is only
reached in the limit of zero temperature for which quantum
effects become relevant. These are not taken into account in the
classical Langevin equation (2). However, for sufficiently large
Josephson junctions a region of low temperatures exists for which
both thermal and classical fluctuations can be neglected on those
time scales that are experimentally relevant.

The averaged transport behavior is completely determined by
the current–voltage characteristic, i.e. the functional dependence
of the averaged voltage on the applied dc-strength in the
asymptotic limit of large times when all transient phenomena
have died out. To obtain this current–voltage characteristic, we
numerically simulated 103 solutions of Eq. (2) from which we
estimated the stationary dimensionless voltage defined as

v ¼ / _fðt0ÞS; ð3Þ

where the brackets denote averages: (i) over the initial conditions
ðfð0Þ; _fð0Þ;j0Þ according to a uniform distribution on the cube
ffð0Þ 2 ½0;2p�; _fð0Þ 2 ½�2;2�;j0 2 ½0;2p�g; (ii) over realizations of
thermal noise Gðt0Þ; and (iii) a temporal average over one cycle
period of the external ac-driving once the result of the first two
averages have evolved into a periodic function of time. The
stationary physical voltage is then expressed as

V ¼
‘op

2e
v: ð4Þ

For a vanishing dc-strength, i0 ¼ 0, also the average voltage must
vanish because under this condition Eq. (2) as well as the
probability distribution with respect to which the average
is performed are invariant under the transformation
ðf;j0Þ-ð�f;j0 þ pÞ. For non-zero currents i0a0, this symmetry
is broken and the averaged voltage can take non-zero values,
which typically assume the same sign as the bias current i0. Apart
from this ‘‘standard’’ behavior, a Josephson junction may also
exhibit other more exotic features, such as absolute negative
conductance (ANC) [6,7], negative differential conductance (NDC),
negative-valued nonlinear conductance (NNC) and reentrant
effects into states of negative conductance [7,8]. In mechanical,
particle-like motion terms, these exotic transport patterns
correspond to different forms of negative mobility of a Brownian
particle.
3. Transport characteristics

Apart from the averaged stationary velocity v, which presents
the basic transport measure, there are other quantities that
characterize the random deviations of the voltage about its
average v at large times such as the voltage variance

s2
v ¼ / _f

2
S�/ _fS2: ð5Þ

Here the average is performed with respect to the same
probability distribution as for v in Eq. (3). This variance
determines the range

vðt0Þ 2 ðv� sv; vþ svÞ ð6Þ

of the dimensionless voltage vðt0Þ ¼ _fðt0Þ in which its actual value
is typically found. Therefore the voltage may assume the opposite
sign to the average voltage v if sv4v.

In order to quantify the effectiveness of a device in terms of the
power output at a given input, several measures have been
proposed in the literature [16–21]. Here we discuss two of them,
which yield consistent results. For the systems described by
Eq. (2), the efficiency of energy conversion is defined as the ratio of
the power P ¼ i0v done against an external bias i0 and the input
power Pin [22,23],

ZE ¼
ji0vj

Pin
; ð7Þ
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Fig. 1. (Color online) Various performance measures of a Josephson junction in

dependence of the dc-strength are compared. In panel (a) the stationary voltage v

defined in Eq. (3) is depicted while panels (b), (c) and (d) display the standard

deviation sv as a measure the voltage fluctuations, cf. Eq. (5), the P�eclet number Pe

(Eq. (11)) and the two efficiency measures ZE (Eq. (7)) and ZS (Eq. (9)), respectively.

The remaining system’s parameters are: the thermal noise intensity D ¼ 0:001, ac

driving frequency O ¼ 0:78, ac driving amplitude i1 ¼ 0:732 and damping constant

g ¼ 0:143. Three thin vertical lines mark the three dc-strengths i0 ¼ 0:0159 (regime

of absolute negative conductance), i0 ¼ 0:1114 (Ohmic-like regime, chaotic regime,

large diffusion, relatively small current fluctuations), i0 ¼ 0:175 (regime of negative

differential conductance, very regular motion, small diffusion but relatively large

current fluctuations). For corresponding trajectories and phase portraits see Figs. 2–4.
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where Pin is the total ac and dc power supplied to the system. It is
given by [20]

Pin ¼ g½v2 þ s2
v � D� ¼ g½/ _f

2
S� D�: ð8Þ

This relation follows from an energy balance of the underlying
equation of motion (2). Further, the Stokes efficiency is given by the
relation [19]

ZS ¼
igv

Pin
¼
gv2

Pin
¼

v2

v2 þ s2
v � D

; ð9Þ

where ig ¼ gv denotes the Ohmic current, cf. Eq. (2). In contrast to
the definition of the efficiency of energy conversion ZE, the
definition of the Stokes efficiency ZS does not contain the damping
constant g. We note that a decrease of the voltage variance s2

v

leads to a smaller input power and hence to an increase of the
energetic efficiency.

Another quantity that characterizes the effectiveness of
transport is the effective diffusion coefficient of the phase
difference fðtÞ, describing the spreading of trajectories and
fluctuations around the average phases. It is defined as follows:

Df ¼ lim
t-1

/f2
ðtÞS�/fðtÞS2

2t
: ð10Þ

The coefficient Df can also be introduced via a generalized
Green–Kubo relation [5]. Intuitively, the diffusion coefficient is
small and the transport is more effective if the stationary voltage
is large and the spread of trajectories is small. The ratio Df=2p can
be considered as a velocity characterizing the phase difference
diffusion over one period. Its relation to the averaged velocity v of
the phase difference determines the dimensionless P�eclet number
Pe defined as

Pe ¼
2pj/vSj

Df
: ð11Þ

A large P�eclet number indicates a motion of mainly regular nature.
If it is small then random or chaotic influences dominate the
dynamics.

Fig. 1 depicts the main transport characteristics. Panel (a)
represents the dependence of the averaged voltage on the dc-
strength. It displays ANC for small dc-strengths and NDC for larger
dc-values. Ref. [8, Fig. 2] seemingly exhibits a very similar
behavior. The present ac-strength i1 ¼ 0:732, however, is
somewhat larger than the one chosen in Ref. [8]. As a
consequence, the present set of parameters leads to ANC already
for D ¼ 0. The deterministic motion then is governed by two
coexisting attractors, a locked and a non-chaotic running solution,
see Fig. 2.

In panel (b) of Fig. 1 the standard deviation sv of the voltage is
depicted as a function of i0. We note that its dependence on the
dc-strength is rather complicated and without any immediately
obvious relation to the averaged voltage of panel (a). Upon closer
inspection, one though observes that the voltage fluctuations
undergo rapid changes yielding a large standard deviation in the
vicinity of zero bias (at small dc-values) and in the interval where
the regime of the NDC appears. In these regimes, the maxima of
the standard deviation are found, cf. the inset in the upper panel
of Fig. 4, where one can reveal oscillations in the potential well.
Upon a further increase of the dc-strength, the voltage
fluctuations decrease because the influence of the periodic
potential then becomes weaker. Since in this limit oscillations
and back-turns of the trajectories become less frequent the
standard deviation of the voltage decreases.

In panel (c) of Fig. 1 we demonstrate the influence of the dc-
strength on the P �eclet number which is a nonlinear function of
the bias i0: for small, increasing dc-strengths, it first increases
and then drops again; the rapid growth of the voltage
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fluctuations around i0 � 0:175 is accompanied by an increasing
P �eclet number. In this regime the trajectories of the noisy
dynamics stay almost always very close to the periodic
deterministic attractor, trajectories bundle closely together, see
the upper panel of Fig. 4.

Finally we study the efficiency of the device. In panel (d) of
Fig. 1, the two efficiency quantifiers, ZE and ZS are presented. Both
vanish if the averaged voltage is zero. In the regime outside of
ANC, the energy conversion efficiency ZE is a monotonically
increasing function of the dc-strength. In the regime of the NDC
(in the vicinity of i0 ¼ 0:175, cf. Fig. 1), this efficiency is almost
constant with the value ZE ¼ 0:3. With a further increase of the
dc-strength it increases and saturates to the value 1 for large i0.
The Stokes efficiency ZS attains a local minimum in the vicinity of
the dc-strength i0 ¼ 0:18 and is always smaller than the efficiency
of the energy conversion ZE. For large i0, it also approaches the
value 1. In the regime of ANC (shown in the inset of panel (d) in
Fig. 1), both efficiencies are small, of the order 10�3. In Ref. [18],
the rectification efficiency ZR is introduced. Adopting this
definition to system (2), we get

ZR ¼
�i0vþ gv2

�i0vþ g½/ _f
2
S� D�

: ð12Þ

For the present system, ZR takes both positive and negative values.
Moreover, both the corresponding efficiency of energy conversion
ZE and the Stokes efficiency ZS when evaluated with the input-
denominator as given with Eq. (12) assume values larger than
unity. Therefore, these so evaluated three measures ZR, ZE and ZS

are no longer suitable to characterize ‘efficiency’ in the present
context with an inertial dynamics determined from Eq. (2).
4. Summary

Although Josephson junctions have been studied and explored
for many years, still new intriguing properties are discovered in
these particular devices, which also have a great potential to
impact novel technologies. They belong to the most promising
candidates for solid based quantum qubits [25]. ANC in Josephson
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junction has recently theoretically been predicted [6] and
subsequently confirmed experimentally [26]. In the present work,
we continued the study of the main transport characteristics of
such systems. We presented the voltage–current characteristic
which manifests a regime of ANC and two regimes of NDC ( for
i0 � 0:08 and i0 � 0:15). These effects may be realized under
various conditions by a proper choice of the system’s parameters
such as temperature, frequency and ac amplitude and dc strength.
We revealed that the voltage fluctuations characterized by the
voltage standard deviation and the phase difference diffusion
coefficient assume a non-monotonic behavior as functions of the
external load. The voltage standard variation exhibits a global
maximum in the second regime of the NDC, while the diffusion
coefficient has a global minimum in this regime. Within the ANC
regime the energetic efficiency is small while in the regime of the
NDC it takes much larger values.
Acknowledgments

The work was supported in part by the MNiSW Grant N202
203534 and the Foundation for Polish Science (L.M.).

References

[1] P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81 (2009) 387.
[2] R.D. Astumian, P. Hänggi, Phys. Today 55 (11) (2002) 33;

P. Reimann, P. Hänggi, Appl. Phys. A 75 (2002) 169;
P. Hänggi, F. Marchesoni, F. Nori, Ann. Phys. (Berlin) 14 (2005) 51.

[3] R. Bartussek, P. Hänggi, J.G. Kissner, Europhys. Lett. 28 (1994) 459;
M. Barbi, M. Salerno, Phys. Rev. E 62 (1988) 2000;
D. Cubero, J. Casado-Pascual, A. Alvarez, M. Morillo, P. Hänggi, Acta Phys.
Polon. B 37 (2006) 1467;
F.R. Alatriste, J.L. Mateos, Physica A 384 (2007) 223.

[4] J. Łuczka, R. Bartussek, P. Hänggi, Europhys. Lett. 31 (1995) 431;
J. Kula, M. Kostur, J. Łuczka, Chem. Phys. 235 (1998) 27;
J. Kula, T. Czernik, J. Łuczka, Phys. Rev. Lett. 80 (1998) 1377;
J. Łuczka, Physica A 274 (1999) 200.

[5] L. Machura, M. Kostur, F. Marchesoni, P. Talkner, P. Hänggi, J. Łuczka, J. Phys.:
Condens. Matter 17 (2005) S3741;
L. Machura, M. Kostur, F. Marchesoni, P. Talkner, P. Hänggi, J. Łuczka, J. Phys.:
Condens. Matter 18 (2006) 4111.

[6] L. Machura, M. Kostur, P. Talkner, J. Łuczka, P. Hänggi, Phys. Rev. Lett. 98
(2007) 040601.

[7] L. Machura, M. Kostur, P. Talkner, P. Hänggi, J. Łuczka, in: AIP Conference
Proceedings, vol. 922, 2007, p. 455;
M. Kostur, L. Machura, J. Łuczka, P. Talkner, P. Hanggi, Acta Phys. Polon. B 39
(2008) 1177.

[8] M. Kostur, L. Machura, P. Talkner, P. Hänggi, J. Łuczka, Phys. Rev. B 77 (2008)
104509.

[9] A. Barone, G. Patern �o, Physics and Application of the Josephson Effect, Wiley,
New York, 1982.

[10] R.L. Kautz, Rep. Prog. Phys. 59 (1996) 935.
[11] R. Zwanzig, J. Statist. Phys. 9 (1973) 215.
[12] D. Reguera, J.M. Rubi, A. P�erez-Madrid, Phys. Rev. E 62 (2000) 5313;

D. Reguera, P. Reimann, P. Hänggi, J.M. Rubi, Europhys. Lett. 57 (2002) 644.
[13] W.T. Coffey, Yu.P. Kalmykov, J.T. Waldron, The Langevin Equation, second ed.,

World Scientific, Singapore, 2004.
[14] P. Fulde, L. Pietronero, W.R. Schneider, S. Strässler, Phys. Rev. Lett. 35 (1975)
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[15] G. Grüner, A. Zawadowski, P.M. Chaikin, Phys. Rev. Lett. 46 (1981) 511.
[16] I. Der�enyi, M. Bier, R.D. Astumian, Phys. Rev. Lett. 83 (1999) 903.
[17] K. Sekimoto, F. Takagi, T. Hondou, Phys. Rev. E 62 (2000) 7759.
[18] D. Suzuki, T. Munakata, Phys. Rev. E 68 (2003) 021906.
[19] H. Wang, G. Oster, Europhys. Lett. 57 (2002) 134.
[20] L. Machura, M. Kostur, P. Talkner, J. Łuczka, F. Marchesoni, P. Hänggi, Phys. Rev.

E 70 (2004) 061105.
[21] V.M. Rozenbaum, T.Ye. Korochkova, K.K. Liang, Phys. Rev. E 75 (2007) 061115.
[22] T. Sintes, K. Sumithra, Physica A 312 (2002) 86.
[23] M. Kostur, M.L. Machura, P. Hänggi, J. Łuczka, P. Talkner, Physica A 371 (2006)

20.
[24] S. Strogatz, Nonlinear Dynamics and Chaos, Perseus Books, Cambridge, 1994.
[25] Y. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73 (2001) 357;

J.Q. You, F. Nori, Phys. Today 58 (11) (2005) 42.
[26] J. Nagel, D. Speer, T. Gaber, A. Sterck, R. Eichhorn, P. Reimann, K. Ilin, M. Siegel,

D. Koelle, R. Kleiner, Phys. Rev. Lett. 100 (2008) 217001.


	Negative conductances of Josephson junctions: Voltage fluctuations and energetics
	Introduction
	Model of resistively and capacitively shunted Josephson junction
	Transport characteristics
	Summary
	Acknowledgments
	References




