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We study transport properties of an inertial Brownian particle moving in viscous symmetric periodic
structures and driven by an oscillating signal of two harmonic components. We analyze the influence
of symmetric, antisymmetric and asymmetric signals on directed transport and reveal the shift symmetry
of the stationary averaged velocity of the Brownian particle with respect to the relative phase of two com-
ponents of the signal. The shift symmetry holds true in all regimes.
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1. Introduction

Recent progress in the highly controlled fabrication of small
structures opens new prospects for miniaturization of devices, ma-
chines, engines, etc. Processes in such systems can exhibit radically
different properties than at the macroscopic level. For example at
the microscopic scale, immanently there is a world of fluctuations
which cannot be eliminated or even reduced. However, it can be
exploited. A good example are biological motors like kinesin or dy-
nein which exploit thermal fluctuations for their directed move-
ment by the ratchet mechanism [1]. At the microscopic or
mesoscopic levels, ways and means of generation and control of
particle transport are important issues for both theorists [2] and
experimentalists [3]. In literature, there are many suggestions
and examples how to generate a directed movement of particles
[2,4]. Much more difficult problem is related to a precise control
of transport. In the paper, we study an archetype of transport in
(spatially) periodic systems which is described by a Langevin equa-
tion. In this modeling, we know what conditions have to be ful-
filled in order to generate a directed motion of a Brownian
particle. Moreover, properties of this system can be experimentally
verified in a setup consisting of a resistively and capacitively
shunted Josephson junction device [5–7]. It is possible because
the underlying dynamics can conveniently be described by an
equivalent equation of motion in the Stewart–McCumber model
[8–11]. In our previous papers [5,6], we have studied the system
driven by a time-periodic force GðtÞwhich is the simplest harmonic
ll rights reserved.
signal GðtÞ ¼ A cosðXtÞ (or GðtÞ ¼ A sinðXtÞ), where A and X are the
amplitude and angular frequency of the signal, respectively. We
have shown that, when additionally a constant force F is applied,
anomalous transport in experimentally wide regimes can be ob-
served: absolute negative mobility near zero value of F (a linear re-
sponse regime), negative mobility in the nonlinear response
regime and negative differential mobility. In this paper we extend
the analysis by considering the biharmonic driving. However, we
assume that the constant force F ¼ 0.

The paper is organized as follows. In Section 2, we present the
Langevin equation determining dynamics of the Brownian particle
in presence of d-correlated thermal fluctuations. Next, in Section 3,
we address the problem of influence of the second harmonics on
transport of the Brownian particle. In the parameter space, we re-
veal reach transport behavior. Section 4 provides summary and
some conclusions.

2. Langevin dynamics

We study the motion of a classical particle of mass m moving in
the periodic, symmetric one-dimensional potential VðxÞ ¼
DV sinð2px=LÞ of the period L and a barrier height 2DV . The particle
is driven by an unbiased time-periodic biharmonic force

GðtÞ ¼ A½sinðXtÞ þ � sinð2Xt þ /Þ�; ð1Þ

where � is the ratio of the second harmonic amplitude to the funda-
mental amplitude A and the relative phase / determines the time
symmetry of the system. Additionally, the particle is subjected to
the thermal noise. Dynamics of a such defined Brownian motor is
governed by the Langevin equation for the coordinate x ¼ xðtÞ of
the Brownian particle which has the form [12]
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m€xþ c _x ¼ �V 0ðxÞ þ GðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffi
2ckT

q
nðtÞ; ð2Þ

where the dot denotes a differentiation with respect to time and
prime denotes a differentiation with respect to the argument of
the potential VðxÞ. The parameter c is the friction coefficient, T de-
notes temperature, and k is the Boltzmann constant. Thermal fluc-
tuations are modeled by the zero-mean Gaussian white noise nðtÞ
with the correlation function hnðtÞnðsÞi ¼ dðt � sÞ.

We introduce dimensionless variables. The natural length scale
is determined by the period L of the potential VðxÞ. The dynamics
possesses several time scales. We define the characteristic time
s0 determined from the Newton equation, m€x ¼ �V 0ðxÞ, by insert-
ing characteristic quantities, namely, mL=s2

0 ¼ DV=L; hence
s2

0 ¼ mL2=DV . The dimensionless variables thus read:

x̂ ¼ x
L
; t̂ ¼ t

s0
: ð3Þ

The dimensionless Langevin dynamics consequently assumes the
form

€̂xþ ĉ _̂x ¼ �bV 0ðx̂Þ þ gð̂tÞ þ
ffiffiffiffiffiffiffiffiffiffiffi
2ĉD0

q
n̂ð̂tÞ; ð4Þ

where

� the re-scaled friction coefficient ĉ ¼ ðc=mÞs0 is the ratio of the
two characteristic time scales, s0 and the relaxation time scale
of the velocity degree of freedom, i.e., sL ¼ m=c,
� the re-scaled potential

bV ðx̂Þ ¼ VðxÞ=DV ¼ sinð2px̂Þ ð5Þ

assumes the period 1 and the barrier height 2,
� the scaled external time-periodic force
gð̂tÞ ¼ a½sinðxt̂Þ þ e sinð2xt̂ þ /Þ�; ð6Þ

where the signal has the re-scaled amplitudes a ¼ AL=DV and
e ¼ �=DV and the dimensionless angular frequencies x ¼ Xs0,
� the re-scaled, zero-mean Gaussian white-noise forces n̂ð̂tÞ obey
hn̂ðt̂Þn̂ðŝÞi ¼ dðt̂ � ŝÞ with a re-scaled noise intensity D0 ¼ kT=DV .

In the following, mostly for the sake of simplicity, we shall use
only dimensionless variables and shall omit the ‘‘hat”-notation in
all quantities.

Transport properties in systems driven by this type of external
stimulus have been theoretically studied mainly in the over-
damped regime [13–15], for moderate damping [16], both experi-
mentally and theoretically for cold atoms in the optical lattices
[17–19], and for driven Josephson junctions [20].

3. Influence of the second harmonic of the driving

From the symmetry considerations it follows that the long-time
averaged velocity v of the Brownian motor is equal to zero if it is
driven only by one harmonic, i.e. when e ¼ 0 in Eq. (6). In order
to generate a directed motion of the motor, one has to include
the second harmonic. Therefore we pose here the question: what
is the influence of the second component ðe – 0Þ of the external
force gðtÞ on transport properties of the Brownian particle de-
scribed by Eq. (4).

Nonlinearity and three-dimensional phase space ðx; y ¼ _x; z ¼
xtÞ make the system (4) possible to behave chaotically in the
deterministic case ðD0 ¼ 0Þ. Many features depend strongly on
the shape of basins of attraction. If we however plug the tempera-
ture on, it is very likely that we destroy the present scene of
attractors and release the possibility for the system to proceed
not only with attractors but more importantly with the determin-
istic unstable orbits. This situation is extremely complicated and
can change from point to point in the five-dimensional parameter
space fc;x; a; e;D0g. It is almost impossible to find all features for
such a system; therefore the goal of this work is focused only on
the generic influence of the biharmonicity parameter e. In fact,
one is able to tangle the picture even more by setting the frequency
of the second harmonic in gðtÞ free, but authors feel that this is
unnecessarily in this very work.

In the following we will fix the dimensionless temperature to
the value D0 ¼ 0:001 and focus on the stochastic (not determinis-
tic) properties.

3.1. Numerical experiment

In order to establish the influence of the second harmonic of the
driving force on transport properties we have carried out compre-
hensive numerical simulations. We have employed Stochastic Run-
ge–Kutta algorithm of the 2nd order with the time step of
½10�3—10�4�ð2p=xÞ. All numerical calculations have been per-
formed using CUDA environment on desktop computing processor
NVIDIA Tesla C1060. This gave us a possibility to speed the numer-
ical calculations up to few hundreds times more than on typical
modern CPUs. More details on this very efficient method can be
found in the work [21].

We focus on the asymptotic current or long-time averaged
velocity v of the Brownian particle. Averaging was performed over
103—106 different realizations and over one period of the external
driving force T ¼ 2p=x. We choose all initial positions and veloci-
ties to be uniformly distributed over one potential period [0,1] and
the interval v 2 ½�2;2�, respectively.

3.2. Role of symmetry in time domain

Properties of the time dependent driving force gðtÞ in Eq. (6)
determine whether the Brownian particle is transported in the
long-time regime, i.e. whether v ¼ 0 or v – 0. We can distinguish
two special cases of the force gðtÞ .

(i) The first case is when there is such t0 that gðt0 þ tÞ ¼
gðt0 � tÞ. It means that the driving is symmetric or invariant
under the time-inversion transformation, see solid and dot-
ted lines in Fig. 1.

(ii) The second case is when there is such t1 that
gðt1 þ tÞ ¼ �gðt1 � tÞ. This is the case of the antisymmetric
driving, see dashed and dotted-dashed lines in Fig. 1.

As a consequence, in the symmetric case (i), the stationary aver-
age velocity tends to zero when the friction coefficient c tends to
zero: v ! 0 when c! 0; if c – 0 then generically v – 0. It is illus-
trated in Fig. 2 for / ¼ p=2;3p=2. In the asymmetric case (ii), the
stationary average velocity tends to zero when the friction coeffi-
cient c tends to infinity (the overdamped regime): v ! 0 when
c!1; if c <1 then generically v – 0. Let us note that contrary
to the symmetric driving, for c! 0 the velocity v – 0, cf. Fig. 2.
So, it means that the transport is generated by deterministic
dynamics.

We consider the case of the symmetric driving with / ¼ p=2 for
the biharmonicity e ¼ 0:5 (see Fig. 1) and study the role of dissipa-
tion characterized by the friction coefficient c. This is the case
when for c ¼ 0 the stationary average velocity v ¼ 0. When the
friction coefficient increases starting out from zero, the average
velocity becomes non-zero as is illustrated in Fig. 2. The average
velocity as a function of c displays non-monotonic dependence
exhibiting maxima and minima. Moreover, it passes through zero
and the current reversal phenomena can be detected. Because for
c ¼ 0 the velocity v ¼ 0 and for c – 0 generically the velocity



Fig. 1. Dimensionless external ac driving gðtÞ ¼ a½sinðxtÞ þ e sinð2xt þ /Þ� for the
fundamental amplitude a ¼ 1, four different relative amplitudes of the second
harmonics: e ¼ 0:1;0:5;1;2 and selected values of the relative phase: / ¼ 0 (blue
dashed), p=2 (black solid), p (red dotted-dashed) and 3p=2 (black dotted). For
arbitrary values of a and e, the ac driving possesses the time reflection symmetry for
/ ¼ p=2 and / ¼ 3p=2. For / ¼ 0 and / ¼ p the driving is antisymmetric. For other
values of the relative phase / the driving is asymmetric. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 2. The stationary average velocity v as a function of the friction coefficient c is
depicted for selected values of the relative phase /. For / ¼ p=2;3p=2 the driving is
symmetric while for / ¼ 0;p it is antisymmetric. Other parameters read:
a ¼ 4:2;x ¼ 4:9; e ¼ 0:5 and D0 ¼ 0:001.
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v – 0, this case is called the dissipation-induced symmetry break-
ing [22]: the coupling to thermal bath is enough to break the time-
inversion symmetry. We note that for a fixed damping c, the aver-
age velocity for the phase / ¼ 3p=2 takes exactly the opposite sign
to the case / ¼ p=2.
Now, let us consider the antisymmetric case / ¼ 0. For c ¼ 0,
the velocity v – 0. The weak dissipation diminishes the stationary
velocity in comparison to the dissipationless case. The dependence
vðcÞ is also non-monotonic with minima and maxima. As in the
symmetric case, the case with the phase / ¼ p can be obtained
from the case / ¼ 0 by the relation vð/ ¼ pÞ ¼ �vð/ ¼ 0Þ.

3.3. Arbitrary shape of driving

In previous subsection we focused on specific values of the
phase. Here we present the numerical investigation of the 3D
parameter space f/; e; cg. For phases different than just mentioned
above, we reveal also asymmetric external biharmonic signals. In
the Fig. 3, the average velocity is presented in color plots for four
different damping constants c ¼ 0:01;0:1;0:9;2 (panels a–d
respectively) and additionally for the overdamped limit (panel e).
On the abscissa we vary the amplitude e of the second component
of the signal gðtÞ and on ordinate we present phase / 2 ½0;2p�.
Light colors denote positive average velocity. Color becomes darker
for values of v close to zero and eventually turn to dark-gray and
black for negative valued average velocities.

For the weak friction the average velocity has reflection symme-
try vðpþ /Þ ¼ vðp� /Þ as we would expect from a system pre-
pared very close to the limit of the frictionless or Hamiltonian
systems, because then the relation v � sinð/þ p=2Þ is quite well
satisfied [23]. We plotted black dotted lines on each panel to guide
the reader to the point where the driving force gðtÞ possesses the
reflection symmetry, i.e., for / ¼ p=2 and 3p=2.

As we increase the friction coefficient system loses its previous
symmetry and becomes non-symmetric as one can easily see on
panels (b) and (c). In other words – in the situation where both
characteristic times in the system sc and the period T of the driving
take more or less the same value, the battle between periodic stim-
ulation and damping (not strong enough to suppress the driving
influence quickly with possibility of additional energy cumulation)
causes the whole irregular dynamics as seen on the central panel
(c) of Fig. 3. If we, however, analyze situation with strong damping
the picture again gains the symmetry but now of a different kind,
i.e. vðpþ /Þ ¼ �vðp� /Þ, cf. panel (e) in Fig. 3. The close inspec-
tion of all case presented in Figs. 2 and 3 leads to the important
conclusion that for a fixed set of all parameters, there is the shift
symmetry of the stationary velocity with respect to the phase, i.e.,

vð/Þ ¼ �vð/þ pÞ: ð7Þ

This relation is a particular case of a more general relation

vð�eÞ ¼ �vðeÞ; ð8Þ

which follows from the symmetry considerations. One can note that
the transformation /! /þ p is equivalent to the transformation
e! �e. The same relation holds true if, instead of the second har-
monics, we apply a constant force F. Then of course vð�FÞ ¼
�vðFÞ [6]. Remember that for any set of parameters the stationary
average velocity v ¼ 0 when F ¼ 0 or e ¼ 0.

3.4. Controlling transport by symmetric signals

We analyze the case when the external driving is symmetric.
We set the phase of the second harmonics to / ¼ p=2 (see black so-
lid curves in Fig. 1). We check the system response to the signal
against the relative amplitude of the second harmonics e for the
range starting from 0 and ending at the value higher than doubled
base driving amplitude a. In Fig. 4 these characteristics are plotted
for selected driving frequencies x ¼ 0:1;3;4;4:9. From numerical
analysis it follows that the average velocity changes its sign by
varying the parameter e for all inspected frequencies of the
external driving. It means that the shape of the external signal



Fig. 3. Influence of the second harmonic of the external force gðtÞ on transport
properties of the system (4). Dependence of the drift velocity on both the relative
amplitude e (horizontal axis) and the relative phase / (vertical axis) is depicted for
various damping constants c ¼ 0:01;0:1;0:9;2:0 and for the overdamped limit (top
to bottom). Other parameters are: a ¼ 4:2;D0 ¼ 0:001 and x ¼ 4:9. Black dotted
lines are plotted on all panels showing the phases for which the driving force gðtÞ
possesses the reflection symmetry t ! �t, i.e. for / ¼ p=2 and 3p=2.

Fig. 4. The stationary averaged velocity vs. the relative amplitude e of the second
harmonics for four values of the angular frequency x of the signal g(t). Other
parameters are: a ¼ 4:2; c ¼ 0:9;/ ¼ p=2 and D0 ¼ 0:001.

Fig. 5. Logarithmic dependence of the average velocity on the friction coefficient c
is plotted for four relative amplitudes e of the second harmonics of the external
driving gðtÞ. Vertical black dashed line marks the point of the critical value of the
friction coefficient, for which two characteristic times, relaxation time of the
velocity sc ¼ 1=c and period T ¼ 2p=x of the driving force, are equal. One can easily
notice rich behavior of the average velocity around this specific value. Other
parameters are: a ¼ 4:2;x ¼ 4:9;/ ¼ p=2 and D0 ¼ 0:001.
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can control values and direction of the net velocity in the system.
The current reversal can be multiple ðx ¼ 0:1Þ, akin to the situa-
tion described in [24]. Keeping e constant at a certain level usually
the direction of the average motion of Brownian particles changes
its sign for the different values of the driving frequency (e ¼ 0:5 or
2.0). On the contrary there are regimes within the scanned param-
eter space fe;xg where regardless the values of x chosen the sys-
tem response is qualitatively the same.

Next we explore the transport properties for the Brownian par-
ticle moving in the viscous environment with different friction
coefficients. We examine the character of the system response
against the signal of the different shape which we can control by
tuning the parameter e(see Fig. 1 for details). There are two alter-
native limits for the viscous system behavior – Hamiltonian where
system is frictionless [25–27] and overdamped where the charac-
teristic relaxation time for the velocity sc ¼ 1=c is very long. Be-
tween those two peripheries there is a region of moderate
damping which seems to be the most intriguing [5,6,28,29]. It pro-
vides rich spectrum of the very interesting phenomena and there-
fore we are going to focus on this particular domain in the
following.

In Fig. 5 the reflection of the impact of different shapes and
strengths of external driving for the friction constant c in the range
from 0.1 to 10 can be found. This means that the characteristic
relaxation time passes from 10 to 0.1. If we refer this time to the
second characteristic time of importance for system (4), namely
the period of the external driving T ¼ 2p=x ’ 1:28, one can see
that the point where both characteristic times are of the same or-
der can be identified more or less in the middle of the chosen re-
gion of analyzed damping constants. Indeed, after examining of
Fig. 5, one can easily reveal most exciting features around essential
value of the damping constant marked by the vertical dashed black
line on the plot. At low friction, the average velocity is close to zero.
When we, however, increase the friction coefficient to the value of
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around c ¼ 0:3 the system starts to react in a different way
depending on the relative strength of the second harmonic e. For
strengths less then or equal to 1 the current becomes positive,
while for e ¼ 2 system reacts with the opposite sign. This gives a
possibility to control the transport simply by varying the strength
of the second source of the external field. When we go even further
and arrive to the vicinity of the critical point sc ¼ 2p=x, the previ-
ous positive valued current starts to drop, crosses zero and be-
comes negative quite steeply. Surprisingly values of average
velocities for all strengths higher than 0.5 possess almost the same
negative values just above c ¼ 1. Additional enlargement of the
friction leads to reduce of the transport possibilities of the system.
It does not reach zero, but decreases of several orders of magnitude
– see panel (e) in Fig. 3 for details. By setting the strength to zero
we end up with the antisymmetric force and with zero current for
any value of the friction constant due to the symmetry reasons.

4. Summary

We have explored transport properties of the Brownian parti-
cles in a symmetric potential, driven by the time-periodic bihar-
monic signals. We have demonstrated how the symmetry of
driving force influences the transport features. There exists two
limits: overdamped and frictionless. It turns out that in those
two limits different types of symmetry exclude transport. In the
frictionless case the system is time-reversible, thus the symmetric
driving cannot distinct the direction. On the other hand, in the case
of overdamped motion the antisymmetric driving leads to zero
current. In all other cases, as the Curie principle suggests, the par-
ticle has generally non-zero average velocity. The closer inspection
shows that the magnitude and sign of the current has complex
structure in the parameter space. Typically, the multiple current
reversals occur, when one of the system parameters is changed.

In this paper, thermal noise nðtÞ in Eq. (2) is assumed to be
white noise of zero correlation time. In real systems the correlation
time of thermal fluctuations is never zero. In many situations this
approximation is very well but there are also situations where the
white-noise approximation fails and a different treatment based
e.g. on the generalized Langevin equation should be used [30].
However, it is essentially beyond the scope of the paper and re-
quires separate investigations.

Finally, let us remind that the Langevin equation (2) has similar
form as an equation of motion for the phase difference W ¼ WðtÞ
between the macroscopic wave functions of the Cooper pairs on
both sides of the Josephson junction. The quasi-classical dynamics
of the resistively and capacitively shunted Josephson junction,
which is well known in the literature as the Stewart–McCumber
model [8,9,11], is described by the following equation

�h
2e

� �2

C €Wþ �h
2e

� �2 1
R

_Wþ �h
2e

I0 sin W ¼ �h
2e

IðtÞ þ �h
2e

ffiffiffiffiffiffiffiffiffiffiffi
2kBT

R

r
nðtÞ: ð9Þ

The left hand side contains three additive current contributions: a
displacement current due to the capacitance C of the junction, a nor-
mal (Ohmic) current characterized by the normal state resistance R
and a Cooper pair tunnel current characterized by the critical current
I0. In the right hand side, IðtÞ is an external current. Thermal fluctua-
tions of the current are taken into account according to the fluctua-
tion—dissipation theorem and satisfy the Nyquist formula
associated with the resistance R. It is an evident correspondence
between two models: the coordinate x ¼ W� p=2, the mass
m ¼ ð�h=2eÞ2C, the friction coefficient c ¼ ð�h=2eÞ2ð1=RÞ, the barrier
height DV ¼ ð�h=2eÞI0 and the period L ¼ 2p. The biharmonic signal
GðtÞ in Eq. (1) corresponds to the external current IðtÞ . The velocity
v ¼ _x corresponds to the voltage V across the junction. So, all trans-
port properties can be tested in the setup consisting of a resistively
and capacitively shunted Josephson junction device.
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