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Properties of transport of molecular motors are investigated. A simplified model based on the concept of
Brownian ratchets is applied. We analyze a stochastic equation of motion by means of numerical methods.
The transport is systematically studied with respect to its energetic efficiency and quality expressed by
an effective diffusion coefficient. We demonstrate the role of friction and non-equilibrium driving on the
transport quantifiers and identify regions of a parameter space where motors are optimally transported.
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. Introduction

In the process of evolution Nature has created perfect bioma-
hines. Researchers (read: visionaries) have dreamed to get ahead
f Nature and construct molecular-level machines which would
e at the ultimate limit of miniaturization. Recent develop-
ent of nanofabrication technology establishes a foundation for

esigning, synthesizing, constructing and testing functional hybrid
echanical and electrical devices on a nanometre scale. Such

anomachines, operating under different conditions, could find
ery many new applications. Nowadays, there are many problems
hat have to be overcome: how to power such systems, actuate and
ransport them, and couple to another systems. Nature prompts
nd provides partial solutions: within every living cell there is a
ervice structure for its effective function and operation, trans-
Please cite this article in press as: Machura, L., et al., Transp
doi:10.1016/j.biosystems.2008.05.033

ort and distribution of various products and substances inside,
utside and across cells (Howard, 2001). These processes are medi-
ted by tiny bio-motors that move along filamentous tracks. They
o mechanical work consuming energy taken from the hydroliza-
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elationship, 10–11 March, Gliwice, Poland.
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ion of adenosine triphosphate (ATP) which operates as a power
tation. The superfamilies of molecular bio-motors like kinesin,
ynein and myosin are responsible for transport of vesicles and
rganelles, chromosome segregation, cell division and muscle con-
raction, to mention only a few. Although biological, chemical and

echanical aspects have been studied, relatively little is known
bout the mechanisms how the biological motors work. The funda-
ental question is whether their movement is purely deterministic

r rather random which only looks like deterministic on a macro-
cale.

Biological motors possess many of the characteristics required
o power molecular machines. They can generate force and torque,
ransport various cargoes and are able to operate in a processive

anner, i.e. they can move continuously along the specific sub-
trates for distances of up to hundreds of steps (several microns).
n example of such a motor is conventional kinesin (Howard, 2001).
he two heads of the kinesin dimer work in a coordinated manner to
ove along one of 13 protofilament tracks of the microtubule. Each

rotofilament consists of asymmetric ��-tubulin heterodimers. A
eterodimer is about 8 nm long and is asymmetric because it is
omposed of two globular subunits: �-tubulin and �-tubulin which
re joined together in a head-to-tail fashion so that the dimmer has
ort characteristics of molecular motors. BioSystems (2008),

translational symmetry. Because the ��-tubulin heterodimers are
symmetrical, the microtubule is polar and its ends are structurally
ifferent. One consequence of this polarity is that polymerization

s faster at one end than the other. The fast-growing end is called
he plus-end, whereas the slow-growing end is called the minus-

dx.doi.org/10.1016/j.biosystems.2008.05.033
http://www.sciencedirect.com/science/journal/03032647
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nd. The conventional kinesin moves towards the plus-end. There
re other bio-motors like, e.g. ncd dimer (Henningsen and Schliwa,
997; Sablin et al., 1998) which moves in the opposite direction on
he same structure. The reason, why the motor moves in a given
irection, is not explained to the end. There are several conjectures
upported by analysis of very simple mechanical models. One of
hem says that it can depend on size of the motor, another says
hat it can depend on mass of the motor or more enigmatically it
epends on “molecular topology of the motor domain relative to
he rest of the molecule” (Henningsen and Schliwa, 1997).

Artificial molecular motors are under constructions and exper-
ments on transport properties are performed. An example is a
rownian motor by using cold atoms in a dissipative optical lattice.

n experiments the optical potential is spatially symmetric and the
ime symmetry of the system is broken by applying appropriate
ero-mean ac forces. As a result, a current of atoms through the
ptical lattice can be generated (Jones et al., 2004; Sjolund et al.,
006).

. Model

From a physical point of view, the kinesin (or other bio-motors)
oves in a one dimensional spatially periodic potential V(x) =
(x + L) of period L ≈ 8 nm (Visscher et al., 1999). The reflection

ymmetry of this potential is broken V(x) /= V(−x), because the
ˇ–heterodimers, that build the microtubule, a highway for the
iomachine, are asymmetrical. This is a crucial fact because it deter-
ines the mechanism of the kinesin movement—the ratchet effect

Astumian and Hänggi, 2002; Hänggi et al., 2005; Łuczka et al.,
995). To explain this mechanism, let us consider as simple model as
ossible. We assume that the molecular motor is a particle of mass
moving in a periodic potential V(x) of period L and of the barrier

eight �V = Vmax − Vmin. The equation of motion for the motor is
he Newton equation with a complementary random force which
orresponds to thermal fluctuations, i.e. the Langevin equation in
he form

ẍ + �ẋ = f (x) + g(t) +
√

2D� (t). (1)

nertial effects, related to the mass, are described by the first term
n the left hand side. The dissipation is included via the Stokes force
ith the friction coefficient � which is proportional to linear size R

f the particle, i.e.,

= 6��R (2)

nd is additionally determined by the viscosity � of the medium
he particle moves in. The potential force

(x) = −dV(x)
dx

(3)

s zero over a period L,

f (x)〉L = 1
L

∫ L

0

f (x) dx = 1
L

[V(L) − V(0)] = 0. (4)

he stochastic force � (t) describes thermal fluctuations which can
e modeled by ı-correlated Gaussian white noise of the statistics

� (t)〉 = 0, 〈� (t)� (s)〉 = ı(t − s). (5)

ccording to the dissipation–fluctuation theorem, the thermal
Please cite this article in press as: Machura, L., et al., Transp
doi:10.1016/j.biosystems.2008.05.033

oise intensity D is related to the friction coefficient and tempera-
ure T of the system, i.e.,

= �kBT, (6)

here kB stands for the Boltzmann constant.

O
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The external time-dependent force g(t) can be of any genre, both
eterministic or stochastic (Łuczka, 1999; Kula et al., 1998). This
orce makes the system to be in a non-equilibrium state and is a
ource of energy for movement of motors. For biological motors it
omes from chemical reactions. Here, as an example and for the
idactic purposes, we choose a time periodic force, namely

(t) = A cos(˝t) (7)

here A is the amplitude and ˝ stands for the frequency of the
xternal stimulus. Equivalently we can define the period T = 2�/˝
f the external force. This kind of force can be realized for artificial
otors while for biological motors, random non-equilibrium force

s more adequate.

.1. Time scales

In physics only relations between scales of length, time and
nergy are relevant, not their absolute values. Therefore we shell
ow translate the above equation of motion into its dimension-

ess form. First of all we determine characteristic quantities—time
nd length. The characteristic length is the period L of the potential
(x) and accordingly the coordinate of the molecular motor can be

caled as

= x

L
. (8)

ime can be scaled in several ways. One of the possibilities is the
elaxation time �L of velocity or the correlation time of the velocity
f the massive Brownian particle moving freely and driven only by
he thermal noise. It can be extracted from a special case of Eq. (1)
hen the right hand side is zero, i.e.,

v̇ + �v = 0. (9)

rom the above equation it follows

(t) = v(0) exp(−t/�L), (10)

here the characteristic time �L = m/� is sometimes called the
angevin time. Another characteristic time comes from the over-
amped motion of the particle in the potential V(x), when Eq. (1)
educes to the form

dx

dt
= −dV(x)

dx
. (11)

hen, by inserting into above equation the characteristic quantities,
e get the definition of time �0,

L

�0
= �V

L
, �0 = �L2

�V
. (12)

uring the time interval �0 overdamped particle proceeds the dis-
ance L under the influence of the constant force �V/L. Third
haracteristic time follows from the friction less equation of motion,
.e., when Eq. (1) takes the form

d2x

dt2
= −dV(x)

dx
. (13)

rom the above equation the characteristic time �m is given by the
elations

L

�2
m

= �V

L
, �2

m = mL2

�V
. (14)
ort characteristics of molecular motors. BioSystems (2008),

ne can distinguish also other characteristic times like time period
f the external driving T or the well known Einstein diffusion time

E = L2

2DE
, DE = kBT

�
. (15)

dx.doi.org/10.1016/j.biosystems.2008.05.033
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ow we can rescale the equation of motion for the massive Brown-
an particle in several ways. Doing this we shell take as the relevant
ime scales these times which differs for different systems, like �m

r �0. Let us note that the Langevin time and the Einstein diffusion
ime do not depend on the system itself, i.e., on the potential and
he external driving forces.

.2. Rescaled equations of motion

Let us first propose �0 as the relevant time scale, i.e. the rescaled
imensionless time is s = t/�0. The dimensionless form of the
angevin equation then reads

ÿ(s) + ẏ(s) = F(y) + G(s) +
√

2D0	(s), (16)

here dot denotes derivative with respect to the rescaled time
, F(y) = −dW(y)dy = −W ′(y) denotes the rescaled potential force
nd G(s) = (L/�V)g(t) = a cos(ωs) stands for the rescaled external
riving force with the rescaled amplitude a = (L/�V)A and fre-
uency ω = ˝�0. The rescaled spatially periodic potential W(y) =
(x)/�V = V(Ly)/�V = W(y + 1) has the unit period and the unit
arrier height. The dimensionless mass

= m

��0
= �L

�0
(17)

s a ratio of the two characteristic times. The rescaled thermal noise
(s) = (L/�V)� (t) = (L/�V)� (�0s) has exactly the same statistical
roperties as � (t). The dimensionless noise intensity

0 = kBT

�V
(18)

s a ratio of thermal energy to activation energy the particle needs
o traverse the non-rescaled potential barrier.

On the other hand, if we choose the dimensionless time u = t/�m

nd �m as a time scale then we end up with another version of the
escaled Langevin equation, namely

¨ (u) + �̂ ẏ(u) = F(y) + G(u) +
√

2�̂D0	(u). (19)

he dimensionless friction coefficient is a ratio of two characteristic
imes, different then previous two, namely,

ˆ = �
�m

m
= �m

�L
. (20)

he rescaled driving force G(u) = a cos(ωu) with the rescaled ampli-
ude a = (L/�V)A and frequency ω = ˝�m.

Two different scaling are useful in two limiting regimes: Eq. (16)
n the overdamped case (when ε � 1 is a small parameter) while Eq.
19) in the underdamped case (when �̂ � 1 is a small parameter).

.3. Numerical values for kinesin

Let us evaluate characteristic times for one of the best known
iological motor, namely, kinesin which moves along a microtubule.
s already mentioned in Section 1, microtubules are spatially peri-
dic structures of period L ≈ 8 nm. The mass of the kinesin head
omain is of order m = 100 kDa = 1.66 × 10−22 kg and its radius

s R = 3 nm. The friction coefficient � = 6 × 10−11 kg/s is calculated
rom the Stokes formula with the use of the viscosity of water (� =
0−3 kg/ms). In a typical Brownian domain the activation energy is
times higher than the thermal energy, �V = 5kBT and the tem-

erature inside cell is about 310 K (37 ◦C). W can now estimate the
Please cite this article in press as: Machura, L., et al., Transp
doi:10.1016/j.biosystems.2008.05.033

ypical characteristic times for the kinesin moving inside human
ell; thus

�L = 2.77 × 10−12 s, �0 = 1.8 × 10−7 s,
�m = 7 × 10−10 s, �E = 4.57 × 10−7 s.
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The dimensionless mass (17) in the first scaling and the dimen-
ionless friction (20) in the second scaling have the following values

= 1.54 × 10−5 � 1, �̂ = 2.5 × 102.

One can note that the value of the parameter ε is very small.
herefore Eq. (16) seems to be more appropriate than Eq. (19)
ecause (16) contains the small parameter ε. This allows, with a very
ood approximation, to put formally ε = 0 in the dimensionless
quation of motion (16) yielding

˙ (s) = F(y) + G(s) +
√

2D0	(s). (21)

nalysis of this equation is much easier than Eq. (16). From (21) it
ollows that the case of overdamped dynamics takes place for bio-
ogical motors. On the other hand, Eq. (19) contains the parameter �̂
nd one cannot find justifiable arguments to neglect any term in it.
o, this equation is much harder to analyze in a complete manner.
owever, if one wants to investigate some particular effects like

he influence of the inertia on the transport, Eq. (19) is more prac-
icable. For other motors, especially non-biological, inertial effect
an be crucial. An example is an atomic Brownian motor moving in
ptical lattices (Brown and Renzoni, 2008) and Eq. (1) in (Hagman
t al., 2008). It is worth to stress that if the non-equilibrium driv-
ng is of the form (7), the dynamics can be chaotic in some regimes
eading to anomalous transport behavior like negative mobility or
egative conductivity (Machura et al., 2007; Kostur et al., 2008).
elow, we present characteristics of transport in full regime, from
nderdamped to overdamped one. From now on we will use the

ater scaling (19) while defining performance characteristics of the
otion of the Brownian motor and shell omit all the hats in Eq. (19),

or the sake of simplicity.

. Performance characteristics of molecular motors

When one study the motion of molecular motors, the most
mportant transport measure is an average stationary velocity 〈�〉
f the motor (Machura et al., 2004). Averaging should be performed
ver all realization of thermal noise, initial conditions and over a
eriod of the external driving. Average velocity describes how much
ime a typical particle needs to overcome a given distance in the
symptotic (long-time) state. This average velocity, however, is not
he only transport attribute. Other characteristics are also impor-
ant. We will analyze two following transport aspects: quality and
nergetic efficiency. The quality of transport can be characterized
y the effective diffusion coefficient Deff, i.e., by the fluctuations in
he position space (Lindner et al., 2001; Machura et al., 2005, 2006)

eff = 〈x2〉 − 〈x〉2

2t
, (22)

here the brackets 〈·〉 denote averaging over all realizations of ther-
al noise and initial conditions.
The third quantifier is the efficiency of noise rectification

Machura et al., 2004; Suzuki and Munakata, 2003). The motor
oves in viscous media. Therefore the minimal energy input

equired to move a particle in presence of friction � over a given
istance depends on the velocity. In this case, the rectification effi-
iency is given by the formula (Machura et al., 2005; Suzuki and
unakata, 2003; Linke et al., 2005; Kostur et al., 2006)

= �〈v〉2
. (23)
ort characteristics of molecular motors. BioSystems (2008),

Pin

he average input power Pin corresponding to system described by
q. (19) is given by the formula

in = �[〈v2〉 − D0], (24)

dx.doi.org/10.1016/j.biosystems.2008.05.033
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here D0 is defined in Eq. (18). This expression follows from the
nergy balance of the underlying equation of motion (19) (Machura
t al., 2004).

. Numerical experiment and discussion

To examplify the above ideas we analyze Eq. (19) in the long-
ime asymptotic, time-periodic regime after effects of the initial
onditions and transient processes have died out. Then, the sta-
istical quantifiers of interest can be determined in terms of the
tatistical average over the different realizations of the process (19)
nd over the driving period T. Since there are no analytical meth-
ds to handle (19), we made use of numerical approach and have
arried out extensive and precise numerical simulations, applying
tochastic Runge-Kutta algorithm of order 2. For the initial condi-
ions we took points from uniformly distributed circle in the phase

pace (x, �) with the radius r =
√

x2 + �2 = 1 and the origin in
he point (xmin, 0), where xmin denotes minimum of the potential

(y). For the illustration of the above idea we fixed the follow-
ng set of parameters: ω = 4.9, D0 = 0.001, 0.05 and the potential
rofile W(y) = �W[sin(2�y) + 0.25 sin(4�y)], where �W = 0.454
educes the maximal barrier height to unity. The forces correspond-
ng to this potential ranges from the minimal value −2.14 to the

aximal value 4.28. If the amplitude a of the driving is higher
han 4.28, the motor is able to overcome the potential barrier in
ny direction just with the use of the external driving force and
ithout of thermal noise. We analyze the system (19) in the 2-
imensional parameter space {�, a}. We change the rescaled friction
oefficient � from � = 0.001 (underdamped dynamics) to � = 100
Please cite this article in press as: Machura, L., et al., Transp
doi:10.1016/j.biosystems.2008.05.033

overdamped dynamics). The external time periodic force strength
varies between 0 and 5, where the later is just above the maximal
alue of the potential force.

In Fig. 1 we show three characteristics in the low temperature
egime, D0 = 0.001, cf. Eq. (18). In panel (a), we depict the station-

ig. 1. (color online) Performance characteristics of the molecular motor are pre-
ented versus the external force amplitude a and friction coefficient � . In panel (a)
e show the average velocity |〈v〉| < 10−2 (white), negative (blue, gray surrounded

y contour), positive (red, gray). In panel (b) we present the efficiency. In panel (c)
e depict the effective diffusion. Other parameters are: D0 = 0.001, ω = 4.9.
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ry average velocity of the motor. White area corresponds to the
ase when the absolute value of the velocity is small, |〈�〉| < 10−2.
lue (or gray) areas surrounded by contours stands for the nega-
ive mean velocity and red (gray) color indicates regions of positive
elocity. It is seen that for a chosen set of parameters the Brownian
otor has a noticeable velocity for the force amplitude a > 2 and

or not strong damping � < 2. Strictly speaking, the velocity is not
xactly zero assuming very small values of order 10−2 to 10−7 (white
rea on Fig. 1(a)). By inspecting the several colored (gray) areas, one
an observe that the velocity as a function of � or the amplitude a
xhibits the multiple velocity reversals (Kostur and Łuczka, 2001).
ecause the friction coefficient � depends on the linear size of the
otor, it means that motors of different sizes can move in opposite

irections. In panel (b) we show the rectification efficiency (23).
here, white area corresponds to efficiency smaller that � < 10−3.
he correlation of dark regions in panels (a) and (b) is evident.
here are two main islands of efficient energy conversion—one
or {�, a} ∈ {0.4–2, 3–5} and second for {�, a} ∈ {0.001–0.2, 2–5}. In
he region of parameters {� ≈ 0.002, a ≈ 2.9}, the motor efficiency
s very high and is almost 90% (remember that the system is far
rom an equilibrium state). In panel (c) we show the effective
iffusion coefficient of the motor. Large value of this quantifier
eans low quality of motion—Brownian particles move in a very

rregular manner. This region of high efficiency and low quality
f motion (high diffusion), makes our stochastic model similar to
eterministic (Mateos, 2000) or Hamiltonian (Schanz et al., 2001)
ystems.

Upon the inspection of Fig. 1 one can notice that for the param-
ter island with large negative average velocity and high efficiency
large area around � = 0.02 and a = 2.8), the motor moves quite
ort characteristics of molecular motors. BioSystems (2008),

rregularly because Deff is large. For the island with large positive
elocity and medium efficiency (smaller area around � = 1 and
= 4), the effective diffusion is small reflecting good quality of

ransport and regular motion.

ig. 2. (color online) The same as in Fig. 1 but for higher temperature, D0 = 0.05.
anel (a): the average velocity |〈v〉| < 10−3 (white), negative (blue, gray surrounded
y contour), positive (red, gray). Panel (b): the efficiency. Panel (c): the effective
iffusion.

dx.doi.org/10.1016/j.biosystems.2008.05.033
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Let us consider the case of higher temperature, D0 = 0.05. Tran-
itions of a particle over potential barriers are easier and details
f the shape of the potential is not so important now. As one
an see from panel (a) of Fig. 2, absolute values of the average
elocity are one order smaller than in the previous temperature
egime. Higher temperature makes the motor motion slower in
oth negative—blue (gray) contoured areas, or positive—red (gray)
olored regions. Again as in the previous case, in the 2-dimensional
arameter space {�, a}, we can identify the velocity reversal phe-
omenon upon the change of the control parameters a or � . In the
egative direction the maximal velocity 〈�〉 = −0.06 and in the pos-

tive direction 〈�〉 = 0.14. In the optimal regime, the efficiency of
he motor transport is of order 1%. The only characteristic which
eems to be better than in the previous scenario is the effective dif-
usion presented in panel (c). The motor seems to move in a much

ore regular manner than for lower temperature yielding maxi-
um value of Deff = 250 for underdamped system. It is a region
here the averaged velocity is almost zero and the efficiency is

ery low.
Comparison of Figs. 1 and 2 leads to the conclusion that the

nfluence of higher temperature is rather destructive. The only bet-
er quantifier is the effective diffusion coefficient which is smaller.
t means that the islands in the parameter space {�, a} for higher
emperature with relatively high (negative or positive) velocity
ccompanied by the highest possible efficiency represent regimes
here the motor moves rather in a regular way.

. Conclusions

The most demanded properties of any transporting machinery
re: efficiency and quality. The latter in our case is characterized
y the effective diffusion coefficient. Let us note that even in any
quilibrium system the particle can be transported over long dis-
ances due to thermal diffusion. It is, however, very unreliable when
he distance becomes large because the diffusion cannot distin-
uish direction and most of traveling particles would not arrive at
rescribed destination in a reasonable time. On the other hand,
rom Figs. 1 and 2 we can see that the large diffusion is some-
imes in regimes where the energetic efficiency is high. In real
ituations, Nature chooses between above scenarios. Under some
ircumstances, if, e.g. the distances are small, the diffusion can be
xploited to transport the cargo and no energy is wasted. When the
istance is larger, then the non-equilibrium transport is applied and
eliability is achieved sacrificing the energy input.
Please cite this article in press as: Machura, L., et al., Transp
doi:10.1016/j.biosystems.2008.05.033
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