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Kinetics of magnetic flux in a thin mesoscopic ring biased by a strong external magnetic field is described 

equivalently by dynamics of a Brownian particle in a tilted washboard potential. The ‘flux velocity’, i.e. 

the averaged time derivative of the total magnetic flux in the ring, is a candidate for a novel characteristics 

of mesoscopic rings. Its global properties reflect the possibility of accommodating persistent currents in 

the ring. 

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1 Mesoscopic rings: two-fluid model 

Mesoscopic devices have attracted much theoretical and practical attention because they are promising 

for implementation in ultra-small hybrid elements to test quantum information theory [1]. A large class 

of such devices is based on ring structures, i.e. the Aharonov–Bohm topology. Such a class contains 

both superconducting (SQUIDs) and non-superconducting devices.  

 In this paper we study selected kinetic aspects of persistent currents which can be observed in normal 

metal, semiconducting rings or cylinders and, as probably the most famous examples, in carbon nano-

tubes or nanotori. We focus our attention on kinetics of magnetic flux in the presence of a strong external 

static magnetic field. We show that it can be modeled in the same way as the dynamics of a Brownian 

particle moving in a biased washboard potential. Here, the analog of the position of the Brownian parti-

cle is a total magnetic flux. We show that the time derivative of the magnetic flux, i.e. the flux velocity 

(if we recall the analogy to the dynamics of the Brownian particle) depends strongly on the ability of 

accommodation of persistent currents by the ring.  

 Persistent currents are equilibrium currents flowing in the Aharonov–Bohm systems which are small 

enough to preserve phase coherence of electrons [2, 3]. In ideal samples at the vanishing temperature 

0T = , all electrons are the carriers of such a current. It is not the case at non-zero temperatures 0T > , 

when some of the electrons are no longer coherent and are a source of the ‘normal’ Ohmic current. Let us 

consider now a mesoscopic ring placed in a uniform magnetic field B in the 3-dimensional space. Be-

cause of the self-inductance L, the electric current I will induce a magnetic flux φ  in the ring. Therefore, 

the flux and the current in the ring are coupled according to the expression  

 
e e coh dis

[ ]LI L I Iφ φ φ= + = + + . (1) 

The flux 
e

φ  is induced by the external magnetic field B. The total current I is a sum of the coherent cur-

rent 
coh
I  and the Ohmic dissipative current 

dis
.I  The coherent current is assumed to be a linear combina-

tion of the paramagnetic and diamagnetic contributions. This is related to occurrence, with a probability 
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p, of the so called current channel with an even number of coherent electrons or an odd number of coher-

ent electrons, with a probability 1 p- . Hence, with 
0

h/eφ = , it reads [4]  
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The amplitudes take the form [4]  

 
F

4 exp ( / *)
( / *) cos ( )

π * 1 exp ( 2 / *)
n x

T nT T
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The characteristic temperature *T  is determined from the relation 2

B F
* /2πk T ∆= , where 

F
∆  marks the 

energy gap, 
F
k  is the momentum at the Fermi surface and 

x
l  is the circumference of the ring. The param-

eter 
0
I  is the maximal value of the persistent current at temperature 0T = .  

 The dissipative current 
dis
I  is determined by the Ohm’s law and Lenz’s rule [5],  

 B

dis dis

1 d 2
( ) ( )

d

k T
I I T t

R t R

φ
φ Γ= , = - + , (4) 

where R is resistance of the ring, k
B
 denotes the Boltzmann constant and ( )tΓ  describes thermal, John-

son–Nyquist fluctuations of the Ohmic current. This thermal noise is modeled by the Gaussian white 

noise of zero average, i.e., ( ) 0tΓ〈 〉 =  and δ -auto-correlation function ( ) ( ) ( )t s t sΓ Γ δ〈 〉 = - . The noise 

intensity 
0 B

2 /D k T R=  is chosen in accordance with the classical fluctuation-dissipation theorem. 

 From Eqs. (1)–(4), we get the Langevin equation governing the dynamics of the magnetic flux [6]:  
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It can be rewritten in the form  
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where the generalized potential ( )W φ  reads  
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Equation (6) has been analyzed under various regimes [6]. In the following, we study specific regime of 

this system. 

2 Flux-biased regime 

We intend to investigate the flux-biased regime which is defined in the following way [7]: Let the exter-

nal magnetic field B increases giving rise to increase of the magnetic flux 
e

φ . Let additionally the self-

inductance L increases. Formally, we perform the limit 
e

φ Æ• and LÆ• in such a way that the ratio 

e e
/L Iφ =  is fixed. In this limit, the generalized potential ( )W φ  approaches a washboard form. Indeed, in 

Fig. 1, we present four forms of the dimensionless generalized potential  
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with the dimensionless flux 
0

/x φ φ= , 
e e 0

/x φ φ=  and the dimensionless inductance 
1 0 0

/L LI φ= . We  

can notice that for the fixed ratio 
e 1 e 0 e 0
/ ( ) / 1/5x L LI I Iφ= / = =  and for 

e
20x =  and 

1
100L = , the potential 

1
( )W x  is very well approximated by the biased washboard potential for large (but finite) number of  

periods of the coherent current 
coh
( )I Tφ , . In the flux-biased regime, the Langevin equation (5) takes the 

form  

 
d d ( )

2 ( )
d d

x V x
D

x
ξ τ

τ
= - + , (9) 

where the dimensionless time 
0

/tτ τ=  with 
0 0 e

/RIτ φ=  and the biased washboard potential ( )V x  (see 

Fig. 2) reads  
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with the rescaled current amplitude 
0 0 e

/i I I= . The rescaled zero-mean Gaussian white noise ( )ξ τ  has the 

same δ-auto-correlation function as ( )tΓ . Its intensity 
0 0

D k T= , where the dimensionless temperature 

0
/ *T T T=  and 

0 B 0 e
*/k k T Iφ=  is the ratio of thermal energy at the characteristic temperature *T  to the 

energy of the flowing current 
e
I  induced by the elementary flux 

0
φ .  

 The Langevin Eq. (9) can be interpreted in terms of the overdamped motion of the Brownian particle 

in the washboard potential (10). The periodic part of this potential is a ‘ratchet type’ potential [8], i.e. 

( )V x  does not posses the reflection symmetry. Let us notice that for 1/2p = , there is an additional perio-

dicity ( 1/2) ( )V x V x+ =¢ ¢  presented in the system. 
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Fig. 1 Rescaled generalized potential (8) for 1/2p =  

and temperature 
0

/ * 0 5.T T T= = .  The potential ap-

proaches the washboard potential (10) when the external 

flux 
e
x  increases and the ratio 

e 1 e 0
/ /( )x L I Lφ=  is fixed. 

This ratio is 1/5 and 
e 1

1 5x L= , =  (solid line), 

e 1
3 15x L= , =  (dashed line), 

e 1
5 25x L= , =  (dash-

dotted line) and 
e 1

20 100x L= , =  (dotted line). 

Fig. 2 Washboard potential ( )V x  defined by 

Eq. (10) for 1/2p =  and temperature 
0

0 5T = . . 

For the rescaled current amplitude 
0 c
i i> , the potential 

barriers appear. The critical value of the current ampli-

tude 
c
i  is defined by the conditions ( ) 0V x =¢  and 

( ) 0V x =¢¢ . For the presented set of parameters 
c

2i ª . 
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3 Flux velocity 

In this paper we shall study the averaged (with respect to the noise realizations) stationary flux velocity 

x�〈 〉  which is given by the formula [9]:  

 0 0
(1 ) (0 )

1 exp
V T V T

x N
D

, - ,È Ê ˆ ˘= - ,Í ˙Ë ¯Î ˚
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 The flux velocity is a function of the system parameters. The first parameter is the temperature. The 

second one is the current amplitude 
0
i , which reflects the ability of accommodating persistent currents. 

The third one, [0 1]pŒ , , describes the structure of current channels as it is the probability of occurring 

current channel carrying even number of phase coherent electrons. Let us notice that, due to quantum 

size effects, persistent currents are always present in a sufficiently small system, i.e. there are always 

electrons maintaining their phase coherence when moving around the ring. The problem is if 
0
i  is suffi-

ciently large for those electrons to produce significant contribution to the total current flowing in the 

system at a given temperature. Numerical results show that upon inspection of the properties of the flux 

velocity x�〈 〉  one can infer when the given ring is able to accommodate persistent current of a significant 

amplitude at a given temperature. In Fig. 3 we present the relation between the flux velocity and the 

temperature 
0

T  for several different values of the current amplitude 
0
i . The general tendency is that in the 

presence of  persistent  currents  the flux velocity  is  suppressed at  the low temperature 
0

T  or  large 
0
i .  

There are two classes of the systems split by the critical value 
c
i  of the current amplitude 

0
i , which de-

termines the inflection points of the potential. This qualitative change is defined by a set of two equa-

tions: ( ) 0V x =¢  and ( ) 0V x =¢¢  and is presented in Fig. 2. For 
0 c
i i> , barriers of the potential ( )V x  exist. 

For 
0 c
i i< , the potential is a monotonic function of the flux x. Systems from the first class, with the su-

percritical amplitude 
0 c
i i> , exhibit vanishing flux velocity for 

0
0T Æ . For the second class systems, 

with the subcritical amplitude 
0 c
i i< , the flux velocity decreases but remains finite as temperature 

0
0T Æ . 

It is clear that in the formal limit 
0

0i = , the flux velocity is constant, 
0 0
| 1
i

x〈 〉�
=

= . The critical value 
c

2i ª  

is estimated for the ring with 1/2p = .  

Fig. 3 Averaged stationary flux velocity as a function 

of temperature 
0

T  for several (both subcritical and 

supercritical) values of 
0
i  and fixed p = 1/2. Inset: 

The corresponding washboard potentials (10) at 
0

1T =  

are depicted for 
0

2i =  (upper panel) and 
0

10i =  (lower 

panel).  

Fig. 4 Averaged stationary flux velocity as a function 

of 
0

T  for three values of p and fixed i
0
 = 10. Inset: The 

corresponding washboard potentials (10) at 
0

1T =  

(upper panel) and 
0

2T =  (lower panel) are presented 

for three values of 0 0 25 0 5p = , . , . . 
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 In Fig. 4, the probability p of a channel with an even number of coherent electrons is chosen as a pa-

rameter. For the system with statistically equal number of channels of both types ( 1/2p = ), the flux ve-

locity is greater than for systems with one type of channels dominating over the other (e.g. p = 0). The 

results obtained for 1/4p =  and 0p =  coincide with 3/4p =  and 1p =  respectively and there is no way 

to distinguish which type of channels dominates in the ring.  

 In order to quantify the effect, one can define the ‘susceptibility’, i.e. the temperature derivative of the 

averaged stationary flux velocity at fixed values of other parameters. Its monotonicity characterizes the 

possibility of obtaining persistent currents in the system. With this function one can associate a measure 

of the ability of accommodating persistent currents in the ring. This measure could be defined as a dis-

tance, in the sense of a metric in a function space, between the given (non-zero) susceptibility and the 

zero susceptibility.  

 In conclusion, we have shown that performing suitable limiting procedure one can obtain new signifi-

cant informations about persistent currents in mesorings. Investigations of global properties of the flux 

velocity can serve as an additional characteristics of mesoscopic rings. The perfect example is the 

monotonicity of the temperature derivative of the flux velocity or its asymptotic behavior at low tem-

peratures which carries information about possibility of appearing persistent currents in the ring.  
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