
Vol. 38 (2007) ACTA PHYSICA POLONICA B No 5
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The directed transport of an overdamped Brownian motor moving in
a spatially periodic potential that lacks reflection symmetry (i.e. a ratchet
potential) is studied when driven by thermal and dichotomic nonequilib-
rium noise in the presence of an external, constant load force. We con-
sider both, the classical and the quantum tunneling assisted regimes. The
current-load characteristics are investigated as a function of the system pa-
rameters like the load force, the temperature and the amplitude strength
of the applied two-state noise.
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1. Introduction

Classical regimes of transport of microscopic objects like Brownian par-
ticles are well elaborated in the previous literature (for a historical overview
see in Ref. [1]). In the last decade, special interest has been devoted to
transport in ratchet systems (also termed Brownian motor systems), i.e. to
the phenomenon of noise assisted, directed motion of particles in spatially
periodic structures which possess a broken reflection symmetry [2–4]. In
contrast, the quantum properties of directed transport are only partially
elaborated in such Brownian motor systems [5–8]. Challenges arise in the
quantum regime because the transport can strongly depend on the mutual
interplay of pure quantum effects like tunneling and particle wave interfer-
ence with dissipation processes, nonequilibrium fluctuations and external
driving [9]. Moreover, there exist typically no analogous closed evolution
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equations of such system as in the classical regimes, which are based for ex-
ample on Langevin or Fokker–Planck equations. However, special quantum
regimes can be described nevertheless by use of effectively classical methods.
For example, if the system strongly interacts with a thermostat, quantum
diffusive dynamics can be described by an effective classical Smoluchowski
equation for the diagonal part of the statistical operator in the position rep-
resentation [10], in which the potential and diffusion coefficient are modified
due to quantum effects (Section 2). This so called quantum Smoluchowski
equation has been applied to describe activation processes, quantum diffu-
sion, and Brownian motors [5–8,10]. In this work, we employ it to study the
transport properties of an overdamped Brownian motor moving in a spatially
periodic potential U(x) = U(x+L) of the period L under the influence of an
external, constant bias force when driven by both, thermal equilibrium and
nonequilibrium fluctuations. We analyze the classical as well as the quan-
tum regimes. In particular, the resulting current-load characteristics are
investigated as functions of the system parameters like load, temperature
and amplitude of the nonequilibrium noise (Section 3).

2. Quantum Smoluchowski equation

For systems strongly interacting with a thermostat, which in turn im-
plies a strong friction limit, the quantum dynamics above the crossover
temperature to pure quantum tunneling [11] can be described in terms of
a generalized Smoluchowski equation which accounts for the leading quan-
tum corrections. For a particle of mass M moving in the potential V (x),
this quantum Smoluchowski equation (QSE) for the coordinate-diagonal el-
ements of the density operator ρ(t), i.e. for the probability density function
P (x, t) = 〈x|ρ(t)|x〉 in position space x, takes the form [10]:

Γ
∂

∂t
P (x, t) =

∂

∂x
V ′

eff(x)P (x, t) +
∂2

∂x2
Deff(x)P (x, t) , (1)

where Γ denotes the friction coefficient. The effective potential reads

Veff(x) = V (x) +
1

2
λV ′′(x) , (2)

where the prime denotes the derivative with respect to the coordinate x. The
quantum correction parameter λ describes quantum fluctuations in position
space and reads

λ =
~

πΓ

[

γ + Ψ
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2πM

)]
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1

kBT
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Here, Ψ(z) is the digamma function, γ ≃ 0.5772 the Euler–Mascheroni con-
stant, T is the temperature and kB denotes the Boltzmann constant. The
parameter λ depends nonlinearly on the Planck constant ~ and on the mass
M of the Brownian particle (let us remind that in the classical case, the
overdamped dynamics does not depend on the mass M).

The effective diffusion coefficient reads [7, 12]

Deff (x) =
1

β[1 − λβV ′′(x)]
. (4)

Note that for kBT ≪ ~Γ/M, λ becomes

λ =
~

πΓ

[

γ + ln
(

~βΓ

2πM

)

]

. (5)

From the mathematical point of view, the Smoluchowski equation (1) cor-
responds to the classical Langevin equation in the Ito interpretation [13],

Γ ẋ = −V ′

eff(x) +
√

2ΓDeff (x) ξ(t) . (6)

The zero-mean and the δ-correlated Gaussian white noise ξ(t), meaning that
< ξ(t)ξ(s) >= δ(t− s), models the influence of a thermostat of temperature
T on the system.

3. Biased quantum motor transport

We focus on the dynamics of overdamped quantum Brownian motors
[5–8] moving in a spatially periodic potential U(x) = U(x + L) and driven
by nonequilibrium fluctuations η(t). The quantum thermal fluctuations are
determined by the parameter λ (see Eq. 3). Additionally, a constant bias
force F0 is applied to the system. The dynamics can then be described by
the Langevin equation

Γ ẋ = −V ′

eff(x) +
√

2ΓDeff (x) ξ(t) + η(t) , (7)

where Veff(x) is given by Eq. (2) with

V (x) = U(x) − F0x . (8)

We rewrite Eq. (7) in the dimensionless form, namely,

ẏ = −W ′

eff(y) + F +
√

2Deff(y) ξ̂(s) + η̂(s) , (9)

where the position of the Brownian motor is scaled as y = x/L, time is
rescaled as s = t/τ0, with the characteristic time scale reading τ0 = ΓL2/∆V
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(the barrier height ∆V is the difference between the maximal and minimal
values of the unbiased potential V (x)). During this time span, a classical,
overdamped particle moves a distance of length L under the influence of
the constant force ∆V/L. The effective potential is Weff(y) = W (y) +
(1/2)λ0W

′′(y), where the rescaled periodic potential W (y) = U(yL)/∆V =
W (y +1) possesses unit period and a unit barrier height. The dimensionless
parameter λ0 = λ/L2 describes quantum fluctuations over the characteristic
length L, see in Ref. [7] for further details.

The rescaled diffusion function Deff(y) reads,

Deff(y) =
1

β0[1 − λ0β0W ′′(y)]
. (10)

The dimensionless, inverse temperature β0 = ∆V/kBT is the ratio of the
activation energy in the non-scaled potential and the thermal energy. The
rescaled Gaussian white noise reads ξ̂(s) = (L/∆V )ξ(t), the rescaled, non-
thermal stochastic force is η̂(s) = (L/∆V )η(t) and the rescaled constant
force stands for F = (L/∆V )F0.

The nonequilibrium fluctuations η̂(s) in Eq. (9) are described by sym-
metric Markovian dichotomic noise

η̂(s) = {−a, a} , (11)

which jumps between two states a and −a with a rate ν. The induced
stationary probability current J , or equivalently the asymptotic average ve-
locity of the Brownian motor can then be determined in the adiabatic limit
in a closed form. Put differently, the above stated problem can be solved
analytically in the limit ν → 0. In the above introduced dimensionless
variables the probability current takes the form

〈ẏ〉 = J =
1

2
[J(a) + J(−a)] , (12)

J(a) =
1 − exp[−β0(F + a)]

1
∫

0

dy D−1

eff
(y) exp[−β0Φ(y, a)]

y+1
∫

y

dz exp[β0Φ(z, a)]

, (13)

with the biased, generalized thermodynamic potential reading

Φ(y, a) =

∫

W ′(y) − (F + a)y

Deff(y)
dy

= W (y) + 1
2
λ0W

′′(y) − 1
2

λ0β0[W
′(y)]2 − 1

4
λ2

0 β0[W
′′(y)]2

+(F + a)λ0β0W
′(y) − (F + a)y . (14)
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Unbiased transport properties driven by such dichotomic noise particle have
been elaborated for classical particles in Ref. [14, 15] and in the quantum
regime in Ref. [7].

This analytic expression for the current allows one to study directed
transport in arbitrarily shaped ratchet potentials. As an example, we con-
sider a family of asymmetric periodic potentials of the form

W (y) = W0{ sin(2πy) + 0.4 sin[4π(y − 0.45)] + B sin[6π(y − 0.45)]} , (15)

where B denotes a shape parameter and W0 is chosen in such a way that
the maximal variation of the potential is normalized to unity.
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Fig. 1. The unbiased classical ratchet potential W (y) (solid line) together with the

corresponding unbiased quantum potential Weff(y) (dashed line) and the general-

ized thermodynamic potential Φ(y) ≡ Φ(y, 0) (dotted line) are depicted as functions

of the scaled position y for F = 0, β0 = 10 and two values of the shape parameter B.

The left panel (a) refers to B = 0.3 and the panel (b) to B = 0.62.
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Fig. 2. (Color online) The directed quantum noise-induced transport J of the quan-

tum Brownian motor (solid line) versus the constant bias force F is compared with

its classical limit (dashed line). The current-load characteristics is studied here

for several values of the dimensionless inverse temperature β0 = 2, 5, 10. The di-

chotomic noise level is set to a = 1. The ratchet potential is defined by B = 0.3

(see panel (a) in Fig. 1).
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The influence of quantum corrections on the potential shape is displayed
in Fig. 1 and on transport of the biased Brownian motor is presented in
Figs. 2–4. For the rescaled quantum fluctuations, we set the temperature-
dependent quantum parameter (3) equal to λ0 = 10−4[γ + Ψ(1 + 104β0)].
We study the induced current-load characteristics as a function of all system
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Fig. 3. The directed quantum noise-induced transport J of the quantum Brownian

motor (solid line) versus the dimensionless inverse temperature β0 is compared with

its classical limit (dashed line). The classical and quantum currents are depicted

in the various panels for five different values of the applied external bias F ; i.e. for

bottom to top F = −0.08 − 0.01, 0, 0.01, 0.08. The dichotomic noise level is set to

a = 1. The ratchet potential is defined by B = 0.62 (see panel (b) in Fig. 1).

parameters and elucidate how one can control the directed transport by
adjusting the (inverse) temperature β0, the dichotomic noise strength a and
the strength of the constant force F .

4. Quantum transport characteristics

We next address the question of how the constant bias load F affects the
directed transport properties of the quantum and the corresponding clas-
sical Brownian motors that are driven out of equilibrium by a nonthermal
dichotomic random force η(t). In Fig. 2 we present the current–load charac-
teristics for the dichotomic noise level a = 1.0 and a ratchet potential with
B = 0.3, see panel (a) in Fig. 1. The three sets of curves correspond to
three different values of the dimensionless inverse temperature β0 = 2, 5, 10.
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In the absence of thermal (Gaussian) noise, the dynamics of the driven par-
ticle is confined to a single period as long as the bias forces remain limited
to the interval [F1, F2] with F1 ≃ −3.6 and F2 ≃ 4.42 denoting the two
threshold values. Then, the dichotomic noise alone with a = 1 is not able to
induce transitions to the neighboring periods; this becomes possible only in
the presence of additional, thermal Gaussian noise of unbounded amplitude
which in turn induces a finite probability current. For larger thermal noise
strength (i.e. for smaller β0 or higher temperature), the quantum correc-
tions seemingly play only a minor role for the probability current, see in
Fig. 3. It is only for lower temperatures T that the influence of quantum
effects become more pronounced and distinct deviations from the classical
response behavior become detectable.

The value of the constant bias, for which the current vanishes, is termed
the stall force Fstall. Generally, this stall force depends on the temperature
β−1

0 and on the other system parameters as well. Fig. 2 depicts that by
cooling down the system (i.e. increasing the inverse temperature β0) the
stall force becomes shifted toward larger positive loads. This means that for
lower temperatures the ratchet effect becomes more pronounced. Moreover,
only for small enough temperatures one can resolve the different values of the
stall force for the classical motor and the quantum motor dynamics. If the
temperature is high, then both the quantum and the classical characteristics
are very similar and, additionally, both current-load characteristics cross the
zero-current axis at values that are close to zero. This corresponds to a rather
weak ratchet effect.

With a value for the two-state noise fluctuations set at a = 1.0 and for
the ratchet potential defined by B = 0.62 depicted in panel (b) in Fig. 1, we
observe a pronounced influence of the quantum corrections on the transport
[7]. Also in this case with B = 0.62 the dichotomic force amplitude η(t) alone
cannot induce transport, and the transitions over the potential barriers are
triggered by thermal activation. The limiting force thresholds in this case
read: F1 ≃ −4.86 and F2 ≃ 5.5.

At zero bias (F = 0), the quantum and classical motors now proceed
in the opposite directions within a large range of temperatures, see in the
central panel in Fig. 3. By applying a large enough constant load either
into positive or negative direction, this feature is seemingly destroyed. The
motors are forced to transport accordingly to the applied bias. For very
small values of the force, however, this very intriguing behavior induced by
quantum fluctuations is still preserved at low temperatures.

In the Fig. 4 we plot the current as a function of the dichotomic noise
amplitude a. The ratchet potential is the same as the one used in Fig. 2.
The rescaled inverse temperature is set rather large at β0 = 2. We compare
the resulting classical and quantum currents for five various values of the
constant force F = −1,−0.2, 0, 0.2, 1.
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The middle panel of Fig. 4 depicts the Brownian motor currents for the
unbiased case F = 0. We recover a distinct feature of the ratchet dynamics,
namely, the occurrence of current reversals [15], both in the classical and
in the quantum case, located however at different a-values. In presence
of a sufficiently large bias force these current reversals disappear and the
classical and quantum currents approach each other.

For small values of the dichotomic noise strength a and in the absence
of the external load, classical and quantum currents assume almost identical
values, see the central panel in Fig. 4. In this regime of small dichotomic
noise strengths and non-zero bias, the absolute value of the quantum current
is always larger than its classical counterpart.

5. Summary

Quantum noise induced, directed transport features of an overdamped
Brownian motor moving in a spatially periodic ratchet potential, that is ex-
posed to the constant load in the presence of nonequilibrium, adiabatically
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Fig. 4. The average current J of the quantum (solid line) and classical (dashed

line) Brownian motor versus the two-state noise amplitude a is shown in order

to elucidate the influence of quantum fluctuations on the directed transport. We

present the current for several values of constant load force F = −1,−0.2, 0, 0.2, 1,

from bottom toward top. The dimensionless inverse temperature reads β0 = 2 and

the potential shape parameter B is set to 0.3, cf. panel (a) in Fig. 1.
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varying dichotomic fluctuations, are investigated with this work. The clas-
sical and the quantum regimes, being determined by the ratio of two energy
scales (the energy of thermal equilibrium fluctuations and the activation en-
ergy over barriers), are analyzed in detail. There is no a general rule on
the influence of quantum corrections on current: as a function of the system
parameters, the quantum effects may either increase or as well decrease the
average current of the so forced Brownian motors. The impact of quantum
corrections is also clearly encoded in a shift of position of the respective
values for the stall force.
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namics, the Polish Ministry of Science and Higher Education via the grant
No PBZ-MIN-008/P03/2003.
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